我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python+OpenCV实现单个圆形孔和针检测

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python+OpenCV实现单个圆形孔和针检测

如果中间红色区域是针则可以用下面的代码检测,其阈值和斑点检测的参数根据图像像素值做相应修改

检测的主要思路是先通过找到外面的大圆,再通过圆心定位出一个ROI区域,在ROI区域中检测中心的检测对象

import os
import cv2
import numpy as np
import math
 
# 检测针脚位置
def needelCenter_detect(img):
    params = cv2.SimpleBlobDetector_Params()
    # Setup SimpleBlobDetector parameters.
    # print('params')
    # print(params)
    # print(type(params))
 
    # Filter by Area.
    params.filterByArea = True
    params.minArea = 100
    params.maxArea = 10e3
    params.minDistBetweenBlobs = 50
    # params.filterByColor = True
    params.filterByConvexity = False
    # tweak these as you see fit
    # Filter by Circularity
    params.filterByCircularity = False
    params.minCircularity = 0.2
    # params.blobColor = 0
    # # # Filter by Convexity
    # params.filterByConvexity = True
    # params.minConvexity = 0.87
    # Filter by Inertia
    # params.filterByInertia = True
    # params.filterByInertia = False
    # params.minInertiaRatio = 0.01
 
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 
    # Detect blobs.
    minThreshValue = 110
    _, gray = cv2.threshold(gray, minThreshValue, 255, cv2.THRESH_BINARY)
    # gray = cv2.resize(gray, dsize=None, fx=2, fy=2, interpolation=cv2.INTER_LINEAR)
    # plt.imshow(gray)
    # cv2.imshow("gray",gray)
 
    # 找到距离原点(0,0)最近和最远的点
 
    detector = cv2.SimpleBlobDetector_create(params)
    keypoints = detector.detect(gray)
    # print(len(keypoints))
    # print(keypoints[0].pt[0])
    # 如果这儿没检测到可能会出错
    if len(keypoints) == 0:
        print("没有检测到针角坐标,可能需要调整针角斑点检测参数")
        return keypoints
 
    else:
        print(len(keypoints))
        im_with_keypoints = cv2.drawKeypoints(gray, keypoints, np.array([]), (255, 0, 0),
                                              cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
 
        # if keypoints is not None:
 
        color_img = cv2.cvtColor(im_with_keypoints, cv2.COLOR_BGR2RGB)
        # 画出圆的圆心
        cv2.circle(color_img, (int(keypoints[0].pt[0]), int(keypoints[0].pt[1])), 5, (0, 255, 0), -1)
        cv2.imshow("color_img",color_img)
        # cv2.waitKey()
 
        return keypoints
 
 
 
# 检测连接器圆形位置
def circle_detect(image):
    # 灰度化
    circle_img = image.copy()
    gray = cv2.cvtColor(circle_img, cv2.COLOR_BGR2GRAY)
    # 输出图像大小,方便根据图像大小调节minRadius和maxRadius
    # print(image.shape)
    # 进行中值滤波
    img = cv2.medianBlur(gray, 3)
 
    # 针角圆心坐标
    out_x = 0
    out_y = 0
 
    # 霍夫变换圆检测
    circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 10e10, param1=100, param2=30, minRadius=10, maxRadius=100)
    # 如果没检测到会报错
    # 这种判断方式过于简单
    if circles is None:
        print("没有检测到连接器外圆")
 
    else:
        for circle in circles[0]:
            # 圆的基本信息
            # print(circle[2])
            # 坐标行列-圆心坐标
            out_x = int(circle[0])
            out_y = int(circle[1])
            # 半径
            r = int(circle[2])
            # 在原图用指定颜色标记出圆的边界
            cv2.circle(circle_img, (out_x, out_y), r, (0, 0, 255), 2)
            # # 画出圆的圆心
            cv2.circle(circle_img, (out_x, out_y), 3, (0, 255, 255), -1)
 
 
        # 记录外圆坐标
        out_xpoint = out_x
        out_ypoint = out_y
 
        # 只框出单个针角的位置区域
        step_center = 30
        step_rect = 60
        out_x -= step_center
        out_y -= step_center
 
        needleRect = image[out_y: out_y + step_rect, out_x: out_x + step_rect]
        # cv2.imshow("needleRect", needleRect)
 
        # 根据检测到的圆形连接器中心找针角位置
        centerPoint = needelCenter_detect(needleRect)
 
        if len(centerPoint) == 0:
            print("调整位置")
        else:
                # 将针角的坐标原还至原图
            in_x = int(centerPoint[0].pt[0])
            in_y = int(centerPoint[0].pt[1])
            in_x +=   out_x
            in_y +=   out_y
 
            # 画出针角的圆心
            cv2.circle(circle_img, (in_x, in_y), 3, (0, 255, 0), -1)
 
            # 计算两者的距离
            # 假设通过标定其一个像素代表0.0056mm
            DPI = 0.00568
            dis = math.sqrt(math.pow(out_xpoint - in_x,2) + math.pow(out_ypoint - in_y,2))
            print("两者相互之间的距离为(mm):", dis*DPI)
 
 
            cv2.imshow("image",circle_img)
            cv2.waitKey(1)
 
 
 
if __name__ == "__main__":
 
    # # 测试0 如果是小图  需要将检测程序中的cv2.waitKey(1)修改为cv2.waitKey()不然看到图片
    # image = cv2.imread("images/CircleLinker/CLinker01.jpg")
    # # cv2.imshow("show",image)
    # # cv2.waitKey()
    # roi = image
    # circle_detect(roi)
 
 
 
    # 测试1 从原图中换到连接器位置
    image = cv2.imread("SingleImages/class="lazy" data-src/single.jpg")
    # cv2.imshow("show",image)
    # cv2.waitKey()
    # 如何准确找到圆形连接器 ---》用yolo训练后能准备找到
    roi = image[1800:2300, 1800:2300 ]
    # cv2.imshow("show",roi)
    # cv2.waitKey()
    circle_detect(roi)
 
 
 
    # # 测试2 如果是小图  需要将检测程序中的cv2.waitKey(1)修改为cv2.waitKey()不然看到图片
    # image = cv2.imread("SingleImages/single04.jpg")
    # # cv2.imshow("show",image)
    # # cv2.waitKey()
    # roi = image
    # circle_detect(roi)
 
 
 
    # # 测试3 检测文件夹下所有图片
    # path = r"D:\BUFFER\Pycharm\ZhenJiaoDect\SingleImages"
    # for filename in os.listdir(path):  # listdir的参数是文件夹的路径
    #     filenames = path + '\\' + filename
    #     # print(filenames)
    #     img_orig = cv2.imread(filenames, 1)
    #     print(filenames)
    #
    #     if img_orig is None:
    #         print("Warning: No Pictures")
    #     else:
    #         circle_detect(img_orig)
 
 
    # # # 测试4 打开相机测试
    # # 需要将检测程序中的cv2.waitKey()修改为cv2.waitKey(1)
    # # 否则看到不视频实时检测结果
    # capture = cv2.VideoCapture(0)
    #
    # while (True):
    #     # 获取一帧
    #     ret, frame = capture.read()
    #     circle_detect(frame)
    #
    #     # cv2.imshow('frame', frame)
    #
    #     if cv2.waitKey(1) == ord('q'):
    #         break

以上就是Python+OpenCV实现单个圆形孔和针检测的详细内容,更多关于Python OpenCV圆形孔检测的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python+OpenCV实现单个圆形孔和针检测

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

C++利用Opencv实现多个圆形检测

霍夫圆检测是opencv中用来检测圆的重要算法,简单的说,霍夫圆检测就是对图像中的弧线做切线,再在切点位置做切线的垂线,然后看这些垂线能交于一点的个数,这个在方法中是自己设定的
2022-11-13

Python opencv进行圆形识别(圆检测)实例代码

最近工作的项目上需要检测图像中是否有圆形,下面这篇文章主要给大家介绍了关于Python opencv进行圆形识别(圆检测)的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
2023-05-20

Python实现多个圆和圆中圆的检测

这篇文章主要为大家详细介绍了Python如何实现多个圆检测和圆中圆的检测,文中的实现方法讲解详细,具有一定的借鉴价值,需要的可以参考一下
2022-11-16

Python利用OpenCV和skimage实现图像边缘检测

提取图片的边缘信息是底层数字图像处理的基本任务之一。本文将通过OpenCV和skimage的 Canny 算法实现图像边缘检测,感兴趣的可以了解一下
2022-12-28

使用python与opencv怎么实现一个运动检测器功能

使用python与opencv怎么实现一个运动检测器功能?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。Python主要用来做什么Python主要应用于:1、We
2023-06-06

如何在python中使用opencv实现一个颜色检测功能

本文章向大家介绍如何在python中使用opencv实现一个颜色检测功能的基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。Python主要用来做什么Python主要应用于:1、Web开发;2、数据科学研究;3、网络
2023-06-06

怎么在python中利用opencv实现一个车道线检测功能

这篇文章将为大家详细讲解有关怎么在python中利用opencv实现一个车道线检测功能,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。实现思路:1、canny边缘检测获取图中的边缘信息;2、霍
2023-06-06

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录