我的编程空间,编程开发者的网络收藏夹
学习永远不晚

PythonOpenCV实现基于模板的图像拼接

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

PythonOpenCV实现基于模板的图像拼接

之前基于特征点的图像拼接如果是多张图,每次计算变换矩阵,都有误差,最后可以图像拼完就变形很大,基于模板的方法可以很好的解决这一问题。

import cv2
import numpy as np
 
 
 
def matchStitch(imageLeft, imageRight):
 
    ImageLeft_gray = cv2.cvtColor(imageLeft,cv2.COLOR_BGR2GRAY)
    ImageRight_gray = cv2.cvtColor(imageRight,cv2.COLOR_BGR2GRAY)
 
    # cv2.imshow("gray", ImageLeft_gray)
    # cv2.waitKey()
 
    # 获取图像长宽
    height_Left, width_left = ImageLeft_gray.shape[:2]
    height_Right, width_Right = ImageRight_gray.shape[:2]
 
    # 模板区域
    left_width_begin = int(3*width_left/4)
    left_height_begin = 0
    template_left = imageLeft[left_height_begin:int(height_Left/2), left_width_begin: width_left]
    drawLeftRect = imageLeft.copy()
    cv2.rectangle(drawLeftRect, (left_width_begin, left_height_begin), (width_left, int(height_Left/2) ), (0, 0, 255), 1)
 
    cv2.imshow("template_left", drawLeftRect)
    # cv2.waitKey()
    # 右边匹配区域
    match_right = imageRight[0:height_Right, 0: int(2*width_Right/3)]
    # cv2.imshow("match_right", match_right)
    # cv2.waitKey()
 
    # 执行模板匹配,采用的匹配方式cv2.TM_CCOEFF_NORMED
    matchResult = cv2.matchTemplate(match_right, template_left, cv2.TM_CCOEFF_NORMED)
    # 归一化处理
    cv2.normalize( matchResult, matchResult, 0, 1, cv2.NORM_MINMAX, -1 )
    # 寻找矩阵(一维数组当做向量,用Mat定义)中的最大值和最小值的匹配结果及其位置
    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(matchResult)
 
 
    # 设置最终图片大小
    dstStitch = np.zeros((height_Left, width_Right + left_width_begin - max_loc[0] , 3), imageLeft.dtype)
    # imageLeft.dtype
    # print(imageLeft.dtype)
    height_dst, width_dst = dstStitch.shape[:2]
    # copy left image
    dstStitch[0:height_Left, 0:width_left] = imageLeft.copy()
    # cv2.imshow("class="lazy" data-src", dstStitch)
 
    # 匹配右图的高要能和目标区域一样
    matchRight_H = height_Right - max_loc[1] + left_height_begin
    dst_y_start = 0
 
    if height_dst == matchRight_H:
        matchRight = imageRight[max_loc[1] - left_height_begin: height_Right, max_loc[0]:width_Right]
    elif height_dst < matchRight_H:
        matchRight = imageRight[max_loc[1] - left_height_begin: height_Right - 1, max_loc[0]:width_Right]
    else:
        matchRight = imageRight[max_loc[1] - left_height_begin: height_Right, max_loc[0]:width_Right]
        dst_y_start = height_dst - matchRight_H
 
    # copy right image
    # matchRight = imageRight[max_loc[1] - left_height_begin: height_Right, max_loc[0]:width_Right]
 
    drawRightRect = imageRight.copy()
    h, w = template_left.shape[:2]
    cv2.rectangle(drawRightRect, (max_loc[0],max_loc[1]), (max_loc[0] + w, max_loc[1] + h ), (0, 0, 255), 1)
    #
    cv2.imshow("drawRightRect", drawRightRect)
    # cv2.imshow("matchRight", matchRight)
 
    # print("height_Right   " + str(height_Right - max_loc[1] + left_height_begin))
    # print("matchRight" + str(matchRight.shape))
 
 
    height_mr, width_mr = matchRight.shape[:2]
    # print("dstStitch" + str(dstStitch.shape))
    dstStitch[dst_y_start:height_dst, left_width_begin:width_mr + left_width_begin] = matchRight.copy()
 
    # # 图像融合处理相图相交的地方 效果不好
    # for i in range(0, height_dst):
    #     # if i + winHeight > height:
    #     #     i_heiht = True
    #     for j in range(0, width_dst):
    #         if j == left_width_begin:
    #
    #             j += 1
    #             (b1, g1, r1) = dstStitch[i, j]
    #             j -= 1
    #
    #             dstStitch[i, j] = (b1, g1, r1)
 
 
    # cv2.imwrite("fineFlower04.jpg", dstStitch)
 
    cv2.imshow("dstStitch", dstStitch)
    cv2.waitKey()
 
 
 
 
 
if __name__ == "__main__":
 
    # imageLeft = cv2.imread("Images/Scan/2.jpg")
    # imageRight = cv2.imread("Images/Scan/3.jpg")
 
    imageLeft = cv2.imread("Images/Scan/flower05.jpg")
    imageRight = cv2.imread("Images/Scan/flower06.jpg")
    if imageLeft is None or imageRight is None:
        print("NOTICE: No images")
    else:
        # cv2.imshow("image", imageLeft)
        # cv2.waitKey()
        matchStitch(imageLeft, imageRight)

计算时需要注意的是模板区域一定要在拼接的左右两张图中都有,如果疏忽导致左图中模板较大,而右较中选的区域没有完整的模型就接错了。

# 右边匹配区域
match_right = imageRight[0:height_Right, 0: int(width_Right/2)]

右边先一半,一部分模板的不在里面了,就会拼的效果不好

边缘的区域还有改进的地方,后面有空再写。

到此这篇关于Python OpenCV实现基于模板的图像拼接的文章就介绍到这了,更多相关Python OpenCV图像拼接内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

PythonOpenCV实现基于模板的图像拼接

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

基于C++的摄像头图像采集及拼接程序该怎么实现

今天给大家介绍一下基于C++的摄像头图像采集及拼接程序该怎么实现。文章的内容小编觉得不错,现在给大家分享一下,觉得有需要的朋友可以了解一下,希望对大家有所帮助,下面跟着小编的思路一起来阅读吧。程序的说明实现从摄像头实时采集单帧图像,之后完成
2023-06-28

基于Tensorflow的图像识别怎么实现

要实现基于Tensorflow的图像识别,可以按照以下步骤进行:准备数据集:首先需要准备一个包含图像和对应标签的数据集,可以使用现有的公开数据集,也可以自己收集并标记数据。数据预处理:对数据集进行预处理,包括图像尺寸调整、归一化、数据增强等
基于Tensorflow的图像识别怎么实现
2024-03-13

基于Tensorflow的图像识别功能怎么实现

要实现基于Tensorflow的图像识别功能,可以按照以下步骤进行:准备数据集:首先需要准备包含标记好的图像数据集,这些数据将用于训练模型和测试模型的准确性。构建模型:使用Tensorflow构建一个卷积神经网络(CNN)模型,CNN是图像
基于Tensorflow的图像识别功能怎么实现
2024-04-03

如何基于Python实现图像的傅里叶变换

这篇文章主要介绍了如何基于Python实现图像的傅里叶变换,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。前言首先是本文总体代码,改一下图像的读取路径就可以运行了,但我还是建议
2023-06-22

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录