我的编程空间,编程开发者的网络收藏夹
学习永远不晚

openCV实现图像分割

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

openCV实现图像分割

本次实验为大家分享了openCV实现图像分割的具体实现代码,供大家参考,具体内容如下

一.实验目的

进一步理解图像的阈值分割方法和边缘检测方法的原理。
掌握图像基本全局阈值方法和最大类间方差法(otsu法)的原理并编程实现。
编程实现图像的边缘检测。

二.实验内容和要求

编程实现图像阈值分割(基本全局阈值方法和otsu法)和边缘检测。

三.实验主要仪器设备和材料

计算机,VS2017+OpenCV

四.实验原理与方法

图像的阈值分割的基本原理

图像的二值化处理图像分割中的一个主要内容,就是将图像上的点的灰度置为0或255,也就是讲整个图像呈现出明显的黑白效果。用I表示原图,R表示二值化后的图,则二值化的过程可以用以下公式表示:

thr表示选取的阈值。二值化的过程就是当原图的像素灰度值大于阈值就将其变白,否则就将其变黑。即将256个亮度等级的灰度图像通过适当的阀值选取而将图像变为二个级别灰度级,这样只有二个灰度级的图像在图像处理分析过程中占有非常重要的地位,特别是在实用的图像处理中。
根据对全图使用统一阈值还是对不同区域使用不同阈值,可以分为全局阈值方法(global thresholding)和局部阈值方法(local thresholding,也叫做自适应阈值方法adaptive thresholding);这种与坐标相关的阈值也叫动态阈值,具体的方法,可以参考相关的图像处理书籍。

1、基本全局阈值方法,即在整个图像中所有的象素点,其阈值thr相同,具体步骤为:

(1)选取一个初始估计值T;
(2)用T分割图像。这样便会生成两组像素集合:G1由所有灰度值大于T的像素组成,而G2由所有灰度值小于或等于T的像素组成。
(3)对G1和G2中所有像素计算平均灰度值u1和u2。
(4)计算新的阈值:T=(u1 + u2)/2。
(5)重复步骤(2)到(4),直到得到的T值之差小于一个事先定义的参数T0。

2、Otsu方法的算法步骤为:

(1)先计算图像的归一化直方图;
(2)i表示分类的阈值,也即一个灰度级,从0开始迭代;
(3)通过归一化的直方图,统计0~i 灰度级的像素(背景像素) 所占整幅图像的比例w0,并统计背景像素的平均灰度u0;统计i~255灰度级的像素(前景像素) 所占整幅图像的比例w1,并统计前景像素的平均灰度u1;
(4)计算前景像素和背景像素的方差 g = w0w1(u0-u1) (u0-u1)
(5)i++,直到i为256时结束迭代;
(6)将最大g相应的i值作为图像的全局阈值。

边缘检测

图像中边缘的检测可以借助一阶和二阶微分实现,常见的一阶边缘检测算子包括Roberts算子、Prewitt算子和Sobel算子,二阶算子主要是Laplacian算子,由于受噪声影响比较大,往往在使用之前先对图像进行平滑处理,LOG算子就是先对图像进行高斯平滑,然后进行拉普拉斯变换并求零交叉点。Canny算子是最优的边缘检测算子。

五.实验内容

1、图像的阈值分割:

图像为车牌图像,编写代码实现基本全局阈值法和Otsu法,比较分割结果。

2、边缘检测

用边缘检测算子对车牌图像进行处理,可以用梯度算子、Laplacian算子或Canny算子(Canny算子可以直接用OpenCV函数)。比较先阈值分割后边缘检测和直接对图像进行边缘检测这两种情况的结果是否有差别。
注意:这里提取灰度边缘即可。

代码:


#include "pch.h"
#include <iostream> 

#include <opencv2/opencv.hpp>  
using namespace std;
using namespace cv;

// 拉普拉斯锐化函数
void LaplacianSharpDeal(const Mat &class="lazy" data-src, Mat &dst) {
 if (!class="lazy" data-src.data)return;
 for (int i = 0; i < class="lazy" data-src.rows; ++i)
  for (int j = 0; j < class="lazy" data-src.cols; ++j) {
   float a;
   if (i > 1 && i < class="lazy" data-src.rows - 1 && j > 1 && j < class="lazy" data-src.cols - 1) {
    a = 5 * (float)class="lazy" data-src.at<uchar>(i, j) - (float)class="lazy" data-src.at<uchar>(i - 1, j) - (float)class="lazy" data-src.at<uchar>(i, j - 1) -
     (float)class="lazy" data-src.at<uchar>(i, j + 1) - (float)class="lazy" data-src.at<uchar>(i + 1, j);
   }
   else {//边缘赋值
    a = class="lazy" data-src.at<uchar>(i, j);
   }
   if (a > 255 || a < 0) {
    dst.at<uchar>(i, j) = class="lazy" data-src.at<uchar>(i, j);
   }
   else {
    dst.at<uchar>(i, j) = a;
   }
  }
}

// 基本全局阈值方法函数
int BasicGlobalThreshold(Mat class="lazy" data-src, float oldValue)
{ 
 int cols = class="lazy" data-src.cols;
 int rows = class="lazy" data-src.rows;
 float G1 = 0;
 float G2 = 0;
 float g1 = 0;
 float g2 = 0;
 float u1 = 0;
 float u2 = 0;
 float T0 = 0;
 // 计算灰度直方图分布,统计像素数和频率
 for (int i = 0; i < rows; i++)
 {
  for (int j = 0; j < cols; j++)
  {
   if (class="lazy" data-src.at<uchar>(i, j) > oldValue)
   {
    G1 += class="lazy" data-src.at<uchar>(i, j);
    g1 += 1;
   }
   else
   {
    G2 += class="lazy" data-src.at<uchar>(i, j);
    g2 += 1;
   }
  }
 }
 u1 = G1 / g1;
 u2 = G2 / g2;
 T0 = (u1 + u2) / 2;
 std::cout << T0 << std::endl;
 if (abs(oldValue - T0) < 0.1) {
  return T0;
 }
 else
 {
  BasicGlobalThreshold(class="lazy" data-src, T0);
 }
}

// Otsu方法函数
int Otsu(Mat class="lazy" data-src)
{
 int cols = class="lazy" data-src.cols;
 int rows = class="lazy" data-src.rows;
 int nPixelNum = cols * rows;
 // 初始化
 int pixelNum[256];
 double probability[256];
 for (int i = 0; i < 256; i++)
 {
  pixelNum[i] = 0;
  probability[i] = 0.0;
 }
 // 统计像素数和频率
 for (int i = 0; i < rows; i++)
 {
  for (int j = 0; j < cols; j++)
  {
   pixelNum[class="lazy" data-src.at<uchar>(i, j)]++;
  }
 }
 for (int i = 0; i < 256; i++)
 {
  probability[i] = (double)0.1*pixelNum[i] / nPixelNum;
 }
 // 计算
 int Threshold = 0;          // 最佳阈值
 double MaxDelta = 0.0;      // 最大类间方差
 double Mean_0 = 0.0;        // 左边平均值
 double Mean_1 = 0.0;        // 右边平均值
 double Delta = 0.0;         // 类间方差
 double Mean_0_temp = 0.0;   // 左边平均值中间值
 double Mean_1_temp = 0.0;   // 右边平均值中间值
 double Probability_0 = 0.0;       // 左边频率值
 double Probability_1 = 0.0;       // 右边频率值
 for (int j = 0; j < 256; j++)
 {
  for (int i = 0; i < 256; i++)
  {
   if (i < j)// 前半部分
   {
    Probability_0 += probability[i];
    Mean_0_temp += i * probability[i];
   }
   else      // 后半部分
   {
    Probability_1 += probability[i];
    Mean_1_temp += i * probability[i];
   }
  }
  // 计算平均值
  // Mean_0_teamp计算的是前半部分的灰度值的总和除以总像素数,
  // 所以要除以前半部分的频率才是前半部分的平均值,后半部分同样
  Mean_0 = Mean_0_temp / Probability_0;
  Mean_1 = Mean_1_temp / Probability_1;
  Delta = (double)(Probability_0 * Probability_1 * pow((Mean_0 - Mean_1), 2));
  if (Delta > MaxDelta)
  {
   MaxDelta = Delta;
   Threshold = j;
  }
  // 相关参数归零
  Probability_0 = 0.0;
  Probability_1 = 0.0;
  Mean_0_temp = 0.0;
  Mean_1_temp = 0.0;
  Mean_0 = 0.0;
  Mean_1 = 0.0;
  Delta = 0.0;
 }
 return Threshold;
}

void main() {
 Mat image = imread("A1.bmp", 0);
 Mat image1,image2;
 Mat image3(image.size(), image.type());
 Mat image4(image.size(), image.type());

 std::cout << "基本全局阈值方法" << std::endl;

 int OstuThreshold1 = BasicGlobalThreshold(image, 0.01);
 int OstuThreshold2 = Otsu(image);

 std::cout << "Otsu方法" << std::endl;
 std::cout << OstuThreshold2 << std::endl;
 threshold(image, image1, OstuThreshold1, 255, CV_THRESH_OTSU);
 threshold(image, image2, OstuThreshold2, 255, CV_THRESH_OTSU);

 LaplacianSharpDeal(image2, image3);
 LaplacianSharpDeal(image, image4);
 
 imshow("基本全局阈值方法", image1);
 imshow("Otsu方法", image2);
 imshow("先阈值分割后边缘检测", image3);
 imshow("直接对图像进行边缘检测", image4);
 waitKey();
}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程网。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

openCV实现图像分割

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

OpenCV中图像如何实现分割与修复

这篇文章给大家分享的是有关OpenCV中图像如何实现分割与修复的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。背景图像分割本质就是将前景目标从背景中分离出来。在当前的实际项目中,应用传统分割的并不多,大多是采用深度
2023-06-29

python+opencv图像分割如何实现分割不规则ROI区域

这篇文章将为大家详细讲解有关python+opencv图像分割如何实现分割不规则ROI区域,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。python有哪些常用库python常用的库:1.requesuts
2023-06-14

OpenCV基于分水岭算法的图像分割怎么实现

本文小编为大家详细介绍“OpenCV基于分水岭算法的图像分割怎么实现”,内容详细,步骤清晰,细节处理妥当,希望这篇“OpenCV基于分水岭算法的图像分割怎么实现”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。1.
2023-07-05

C++中怎么实现OpenCV图像分割与分水岭算法

小编给大家分享一下C++中怎么实现OpenCV图像分割与分水岭算法,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!分水岭算法是一种图像区域分割法,在分割的过程中,它
2023-06-15

Python怎么实现图像分割

本篇内容介绍了“Python怎么实现图像分割”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!方法一import randomimport nu
2023-06-29

OpenCV利用K-means实现根据颜色进行图像分割

K-means是一种经典的无监督聚类算法---不需要人工干预。本文将通过K-means算法实现根据颜色进行图像分割的效果,感兴趣的小伙伴可以尝试一下
2022-11-13

怎么使用Python第三方opencv库实现图像分割处理

这篇文章主要介绍了怎么使用Python第三方opencv库实现图像分割处理的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇怎么使用Python第三方opencv库实现图像分割处理文章都会有所收获,下面我们一起来看
2023-07-02

OpenCV图像算法怎么实现图像切分图像合并

本篇内容介绍了“OpenCV图像算法怎么实现图像切分图像合并”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!将一张图片切分成多个小图片并将小图
2023-06-30

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录