我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python函数式编程中itertools模块详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python函数式编程中itertools模块详解

容器与可迭代对象

在正式开始前先补充一些基本概念在 Python 中存在容器 与 可迭代对象

  • 容器:用来存储多个元素的数据结构,例如 列表,元组,字典,集合等内容;
  • 可迭代对象:实现了 __iter__ 方法的对象就叫做可迭代对象。

从可迭代对象中还衍生出 迭代器 与 生成器:

  • 迭代器:既实现了 __iter__,也实现了 __next__ 方法的对象叫做迭代器;
  • 生成器:具有 yield 关键字的函数都是生成器。

这样就比较清楚了,可迭代对象的范围要大于容器。而且可迭代对象只能使用一次,使用完毕再获取值就会提示 StopIteration 异常。

除此之外,可迭代对象还有一些限制:

  • 不能对可迭代对象使用 len 函数;
  • 可以使用 next 方法处理可迭代对象,容器也可以通过 iter 函数转换成迭代器;
  • for 语句会自动调用容器的 iter 函数,所以容器也能被循环迭代。

count() 函数

count 函数一般与 range 函数对比学习,例如 range 函数需要定义生成范围的下限,上限与步长可选,而 count 函数不同,指定下限与步长,上限值不用声明。

函数原型声明如下


count(start=0, step=1) --> count object

测试代码如下,其中必须添加跳出循环的判定条件,否则代码会一直运行下去。


from itertools import count
a = count(5, 10)
for i in a:
    print(i)
    if i > 100:
        break

除此之外,count 函数还接收非整数参数,所以下述代码中定义的也是正确的。


from itertools import count
a = count(0.5, 0.1)
for i in a:
    print(i)
    if i > 100:
        break

cycle 函数

用 cycle 函数可以循环一组值,测试代码如下所示:


from itertools import cycle
x = cycle('梦想橡皮擦abcdf')
for i in range(5):
    print(next(x), end=" ")
print("\n")
print("*" * 100)
for i in range(5):
    print(next(x), end=" ")

代码输出如下内容:

梦 想 橡 皮 擦

****************************************************************************************************
a b c d f

可以看到 cycle 函数与 for 循环非常类似。

repeat 函数

repeat 函数用于重复返回某个值,官方给出的函数描述如下所示:


class repeat(object):
    """
    repeat(object [,times]) -> create an iterator which returns the object
    for the specified number of times.  If not specified, returns the object
    endlessly.

进行一下简单的测试,看一下效果:


from itertools import repeat
x = repeat('橡皮擦')
for i in range(5):
    print(next(x), end=" ")
print("\n")
print("*" * 100)
for i in range(5):
    print(next(x), end=" ")

怎么看这个函数,都好像没有太大用处。

enumerate 函数,添加序号

这个函数在前面的文章中,已经进行过简单介绍,并且该函数在 __builtins__ 包中,所以不再过多说明,基本格式如下所示:


enumerate(sequence, [start=0])

其中 start 参数是下标起始位置。

accumulate 函数

该函数基于给定的函数返回一个可迭代对象,默认是累加效果,即第二个参数为 operator.add,测试代码如下:


from itertools import accumulate
data = [1, 2, 3, 4, 5]
# 计算累积和
print(list(accumulate(data)))  # [1, 3, 6, 10, 15]

针对上述代码,修改为累积。


from itertools import accumulate
import operator
data = [1, 2, 3, 4, 5]
# 计算累积
print(list(accumulate(data, operator.mul)))

除此之外,第二个参数还可以为 max,min 等函数,例如下述代码:


from itertools import accumulate
data = [1, 4, 3, 2, 5]
print(list(accumulate(data, max)))

代码输出如下内容,其实是将 data 里面的任意两个值进行了比较,然后留下最大的值。

[1, 4, 4, 4, 5]

chain 与 groupby 函数

chain 函数用于将多个迭代器组合为单个迭代器,而 groupby 可以将一个迭代器且分为多个子迭代器。

首先展示一下 groupby 函数的应用:


from itertools import groupby
a = list(groupby('橡橡皮皮擦擦'))
print(a)

输出内容如下所示:

[('橡', <itertools._grouper object at 0x0000000001DD9438>),
('皮', <itertools._grouper object at 0x0000000001DD9278>),
('擦', <itertools._grouper object at 0x00000000021FF710>)]

为了使用 groupby 函数,建议先对原列表进行排序,因为它是有点像切片一样,发现不同的就分出一个迭代器。

chain 函数的用法如下,将多个迭代对象进行拼接:


from itertools import groupby, chain
a = list(chain('ABC', 'AAA', range(1,3)))
print(a)

zip_longest 与 zip

zip 函数在之前的博客中已经进行过说明,zip_longest 与 zip 的区别就是,zip 返回的结果以最短的序列为准,而 zip_longest 以最长的为准。

测试代码如下,自行比对结果即可。


from itertools import zip_longest
a = list(zip('ABC', range(5), [10, 20, 30, 40]))
print(a)
a = list(zip_longest('ABC', range(5), [10, 20, 30, 40]))
print(a)

zip_logest 如果碰到长度不一致的序列,缺少部分会填充 None。

tee 函数

tee 函数可以克隆可迭代对象,产出多个生成器,每个生成器都可以产出输入的各个元素。


from itertools import tee
a = list(tee('橡皮擦'))
print(a)

compress 函数

该函数通过**谓词(是否,True/False)**来确定对某个元素的取舍问题,最简单的代码如下所示:


from itertools import compress
a = list(compress('橡皮擦', (0, 1, 1)))
print(a)

islice、dropwhile、takewhile、filterfalse、filter

这几个函数都是从输入的可迭代对象中获取一个子集,而且不修改元素本身。

本部分只罗列各个函数的原型声明,具体用法直接参考使用即可。


islice(iterable, stop) --> islice object
islice(iterable, start, stop[, step]) --> islice object
dropwhile(predicate, iterable) --> dropwhile object
takewhile(predicate, iterable) --> takewhile object
filterfalse(function or None, sequence) --> filterfalse object

其中只有 filterfalse 中的参数是函数在前,序列在后。

测试代码如下,尤其注意第一个参数是 callable 即函数。


from itertools import islice, dropwhile, takewhile, filterfalse
a = list(filterfalse(lambda x: x in ["皮", "擦"], '橡皮擦'))
print(a)

总结

以上内容就是本文的全部内容,在使用无限迭代器函数 count,cycle,repeat 的时候,一定要注意即使停止。

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注编程网的更多内容!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python函数式编程中itertools模块详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

一文详解Python中itertools模块的使用方法

itertools是python内置的模块,使用简单且功能强大。这篇文章主要为大家详细介绍了itertools模块的使用方法,感兴趣的小伙伴可以了解一下
2023-03-22

详解Python编程中time模块的使用

一、简介 time模块提供各种操作时间的函数 说明:一般有两种表示时间的方式: 第一种是时间戳的方式(相对于1970.1.1 00:00:00以秒计算的偏移量),时间戳是惟一的 第二种以数组的形式表示即(struct_time),共有九个元
2022-06-04

Python中functools模块函数解析

Python自带的 functools 模块提供了一些常用的高阶函数,也就是用于处理其它函数的特殊函数。换言之,就是能使用该模块对可调用对象进行处理。 functools模块函数概览functools.cmp_to_key(func)fun
2022-06-04

Python编程之Re模块下的函数介绍

re模块下的函数compile(pattern):创建模式对象import re pat=re.compile('A') m=pat.search('CBA') #等价于 re.search('A','CBA') prin
2022-06-05

C++ 函数库详解:系统功能外延与模块化编程

c++++ 函数库提供预定义函数,可扩展程序功能,简化编程。类型包括标准库 (stl)、平台特定库和第三方库。优点包括代码重用、一致性、功能外延和模块化编程。使用步骤:包含头文件、使用命名空间、调用函数。实战案例:使用 stl 存储和操作数
C++ 函数库详解:系统功能外延与模块化编程
2024-05-03

Python中functools模块的常用函数解析

1.partial 首先是partial函数,它可以重新绑定函数的可选参数,生成一个callable的partial对象:>>> int('10') # 实际上等同于int('10', base=10)和int('10', 10) 10
2022-06-04

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录