我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python数学建模PuLP库线性规划入门示例详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python数学建模PuLP库线性规划入门示例详解

1、什么是线性规划

线性规划(Linear programming),在线性等式或不等式约束条件下求解线性目标函数的极值问题,常用于解决资源分配、生产调度和混合问题。例如:


max		fx = 2*x1 + 3*x2 - 5*x3
s.t.	x1 + 3*x2 + x3 <= 12
		2*x1 - 5*x2 + x3 >= 10
		x1 + x2 + x3 = 7
		x1, x2, x3 >=0

线性规划问题的建模和求解,通常按照以下步骤进行:

(1)问题定义,确定决策变量、目标函数和约束条件;
(2)模型构建,由问题描述建立数学方程,并转化为标准形式的数学模型;
(3)模型求解,用标准模型的优化算法对模型求解,得到优化结果;

2、PuLP 库求解线性规划

PuLP是一个开源的第三方工具包,可以求解线性规划、整数规划、混合整数规划问题。
下面以该题为例讲解 PuLP 求解线性规划问题的步骤:

-(0)导入 PuLP库函数


    import pulp

-(1)定义一个规划问题


    MyProbLP = pulp.LpProblem("LPProbDemo1", sense=pulp.LpMaximize)

pulp.LpProblem 是定义问题的构造函数。
  "LPProbDemo1"是用户定义的问题名(用于输出信息)。
  参数 sense 用来指定求最小值/最大值问题,可选参数值:LpMinimize、LpMaximize 。

-(2)定义决策变量


    x1 = pulp.LpVariable('x1', lowBound=0, upBound=7, cat='Continuous') 
    x2 = pulp.LpVariable('x2', lowBound=0, upBound=7, cat='Continuous')
    x3 = pulp.LpVariable('x3', lowBound=0, upBound=7, cat='Continuous') 

pulp.LpVariable 是定义决策变量的函数。
  ‘x1' 是用户定义的变量名。
  参数 lowBound、upBound 用来设定决策变量的下界、上界;可以不定义下界/上界,默认的下界/上界是负无穷/正无穷。本例中 x1,x2,x3 的取值区间为 [0,7]。
  参数 cat 用来设定变量类型,可选参数值:‘Continuous' 表示连续变量(默认值)、' Integer ' 表示离散变量(用于整数规划问题)、' Binary ' 表示0/1变量(用于0/1规划问题)。

-(3)添加目标函数


    MyProbLP += 2*x1 + 3*x2 - 5*x3  	# 设置目标函数

添加目标函数使用 “问题名 += 目标函数式” 格式。

-(4)添加约束条件


    MyProbLP += (2*x1 - 5*x2 + x3 >= 10)  # 不等式约束
    MyProbLP += (x1 + 3*x2 + x3 <= 12)  # 不等式约束
    MyProbLP += (x1 + x2 + x3 == 7)  # 等式约束

添加约束条件使用 “问题名 += 约束条件表达式” 格式。
  约束条件可以是等式约束或不等式约束,不等式约束可以是 小于等于 或 大于等于,分别使用关键字">="、"<=“和”=="。

-(5)求解


    MyProbLP.solve()
    print("Status:", pulp.LpStatus[MyProbLP.status]) # 输出求解状态
    for v in MyProbLP.variables():
        print(v.name, "=", v.varValue)  # 输出每个变量的最优值
    print("F(x) = ", pulp.value(MyProbLP.objective))  #输出最优解的目标函数值    

solve() 是求解函数。PuLP默认采用 CBC 求解器来求解优化问题,也可以调用其它的优化器来求解,如:GLPK,COIN CLP/CBC,CPLEX,和GUROBI,但需要另外安装。

3、Python程序和运行结果

完整的程序代码如下:


import pulp
MyProbLP = pulp.LpProblem("LPProbDemo1", sense=pulp.LpMaximize)
x1 = pulp.LpVariable('x1', lowBound=0, upBound=7, cat='Continuous') 
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7, cat='Continuous') 
x3 = pulp.LpVariable('x3', lowBound=0, upBound=7, cat='Continuous') 
MyProbLP += 2*x1 + 3*x2 - 5*x3  	# 设置目标函数
MyProbLP += (2*x1 - 5*x2 + x3 >= 10)  # 不等式约束
MyProbLP += (x1 + 3*x2 + x3 <= 12)  # 不等式约束
MyProbLP += (x1 + x2 + x3 == 7)  # 等式约束
MyProbLP.solve()
print("Status:", pulp.LpStatus[MyProbLP.status]) # 输出求解状态
for v in MyProbLP.variables():
    print(v.name, "=", v.varValue)  # 输出每个变量的最优值
print("F(x) = ", pulp.value(MyProbLP.objective))  #输出最优解的目标函数值
#= 关注 Youcans,分享原创系列 https://blog.csdn.net/youcans =

程序运行结果如下:


Welcome to the CBC MILP Solver 
Version: 2.9.0 
Build Date: Feb 12 2015 
Status: Optimal
x1 = 6.4285714
x2 = 0.57142857
x3 = 0.0
F(x) =  14.57142851

以上就是Python数学建模PuLP库线性规划入门示例详解的详细内容,更多关于数学建模PuLP库线性规划入门的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python数学建模PuLP库线性规划入门示例详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录