我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python的环境conda简介

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python的环境conda简介

Conda Guide

Conda简介

conda是一个包,依赖和环境管理工具,适用于多种语言,如: Python, R, Scala, Java, Javascript, C/ C++, FORTRAN。

应用场景:比如在A服务器开发了一个应用,安装了N个包。现在要迁移到B服务器,又要重新安装一遍,还不知道A服务器上哪些包是必须的。conda就是解决这种问题,把该应用需要的包都安装到应用所在的环境中,迁移的时候,只要把环境导出,再导入到B环境即可。

Conda的安装

安装过程

windows的安装就不演示了,直接在网上搜miniconda安装包,然后一路点下一步即可安装完成。

下边讲解linux下的安装

创建condarc.mirror文件

channels:
  - conda-forge
  - bioconda
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.bfsu.edu.cn/anaconda/pkgs/main
  - https://mirrors.bfsu.edu.cn/anaconda/pkgs/r
  - https://mirrors.bfsu.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.bfsu.edu.cn/anaconda/cloud
  msys2: https://mirrors.bfsu.edu.cn/anaconda/cloud
  bioconda: https://mirrors.bfsu.edu.cn/anaconda/cloud
  menpo: https://mirrors.bfsu.edu.cn/anaconda/cloud
  pytorch: https://mirrors.bfsu.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.bfsu.edu.cn/anaconda/cloud
curl -L -o /tmp/miniconda.sh https://repo.anaconda.com/miniconda/Miniconda3-py39_4.11.0-Linux-x86_64.sh
/bin/bash /tmp/miniconda.sh -b -p /opt/conda
rm /tmp/miniconda.sh
conda clean -tipsy
find /opt/conda -follow -type f -name '*.a' -delete
find /opt/conda -follow -type f -name '*.pyc' -delete
conda clean -afy
cp ./condarc.mirror /root/.condarc

更新conda

conda update conda

镜像服务器

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda
conda config --set show_channel_urls yes
# 执行完上述命令后,会在Users目录生成.condarc

环境管理

查看所有环境

conda env list

新建环境

conda create --name [name] python_or_others
ps: conda create --name FastAPI python=3.9.12

进入环境

conda activate env_name

退出环境

conda deactivate

删除环境

conda remove -n env_name --all

复制环境

conda create --clone ENVNAME --name NEWENV

package管理

列出package

conda list

列出指定环境中的所有软件包

conda list -n myenv

安装package

pip install xxxx 或者 conda install xxxx
ps:pip install tensorflow

如果不用-n指定环境名称,则被安装在当前活跃环境,也可以通过-c指定通过某个channel安装

conda install (-n python34) numpy

更新package

conda update (-n python34) numpy

卸载package

conda remove/uninstall package_name

查找package信息

conda search (-n python34) numpy

更新目前环境所有package

conda update --all

导出当前环境的package信息

conda env export > environment.yaml

清除缓存

删除索引缓存、锁定文件、未使用的缓存包和tarball(压缩包).

conda clean -a

环境的复制

注意:yaml的方式,很消耗资源,系统配置至少要2核4G以上,且yaml的package不能过多,否则会被killed

1、导出环境

conda env export > environment.yaml

文件内容示例

name: kyle
channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
  - https://repo.anaconda.com/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
  - defaults
dependencies:
  - _pytorch_select=0.2=gpu_0
  - pip:
    - opencv-python==4.1.2.30

2、导入环境

conda env create -f environment.yaml

3、Clone环境

conda env update -n my_env --file ENV.yaml

到此这篇关于python的环境conda简介的文章就介绍到这了,更多相关python环境conda内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python的环境conda简介

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python关于conda创建新环境

conda创建新环境  如果只是用的话,用【创建】和【激活】的命令足够了~  第一步:创建  conda create --name yourEnv python=2.7  –name:也可以缩写为 【-n】,【yourEnv】是新创建的虚
2023-01-31

Conda简介:解密conda的神秘面纱

Conda简介:解密conda的神秘面纱,需要具体代码示例导言:近年来,Python语言发展迅猛,成为了数据科学、人工智能等领域的首选编程语言。随着Python包的不断增多,管理这些包的问题也逐渐凸显出来。幸运的是,有一款强大的工具出现在
Conda简介:解密conda的神秘面纱
2024-02-22

conda如何配置python虚拟环境

这篇文章主要介绍“conda如何配置python虚拟环境”,在日常操作中,相信很多人在conda如何配置python虚拟环境问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”conda如何配置python虚拟环境
2023-07-05

conda怎么创建python虚拟环境

创建Python虚拟环境Python虚拟环境可隔离不同项目的Python安装,避免版本冲突和管理依赖关系。使用conda创建虚拟环境安装conda创建虚拟环境:condacreate-nmyenvpython=3.9激活虚拟环境安装依赖关系退出虚拟环境:condadeactivate管理虚拟环境列出虚拟环境:condaenvlist删除虚拟环境:condaremove-nmyenv--all最佳实践为每个项目创建单独的虚拟环境在激活的虚拟环境中安装库定期更新虚拟环境在不使用虚拟环境时禁用它
conda怎么创建python虚拟环境
2024-04-11

conda配置python虚拟环境的实现步骤

本文主要介绍了conda配置python虚拟环境的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-03-19

Linux环境变量文件的简单介绍

这篇文章主要介绍“Linux环境变量文件的简单介绍”,在日常操作中,相信很多人在Linux环境变量文件的简单介绍问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Linux环境变量文件的简单介绍”的疑惑有所帮助!
2023-06-05

Docker中conda环境的导出和导入

Docker中的Conda环境可以通过导出和导入进行共享。导出时,可以使用condaenvexport命令生成YAML文件,其中包含已安装包及其版本。导入时,使用condaenvcreate-f命令指定YAML文件来创建一个带有所需依赖项的新环境。需要注意YAML文件版本、依赖项版本、系统依赖项和环境名称的匹配性。还可使用DockerCompose自动化导出和导入过程。其他导出方法包括Miniconda虚拟环境和Pipfile,其他导入方法包括Minicondatarball文件和Pipfile。
Docker中conda环境的导出和导入
2024-04-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录