我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Redis数据库分布式的示例分析

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Redis数据库分布式的示例分析

这篇文章给大家分享的是有关Redis数据库分布式的示例分析的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

    问题:1-2亿数据需要缓存,如何设计?

    1 哈希取余分区

    2亿条记录就是2亿个k,v,假设有3台机器构成一个集群,用户每次读写操作都是根据公:hash(key) % N个机器台数,计算出哈希值,并用来决定数据映射到哪一个节点上。取数据的时候只需要个根据公式在相应的机器,用key就可以取到value。

    优点:  简单粗暴,直接有效,只需要预估好数据规划好节点,例如3台、8台、10台,就能保证一段时间的数据支撑。使用Hash算法让固定的一部分请求落到同一台服务器上,这样每台服务器固定处理一部分请求(并维护这些请求的信息),起到负载均衡+分而治之的作用。

    缺点:原来规划好的节点,进行扩容或者缩容就比较麻烦了,不管扩缩,每次数据变动导致节点有变动,映射关系需要重新进行计算,在服务器个数固定不变时没有问题,如果需要弹性扩容或故障停机的情况下,原来的取模公式就会发生变化:Hash(key)/3会变成Hash(key) /?。此时地址经过取余运算的结果将发生很大变化,根据公式获取的服务器也会变得不可控。某个redis机器宕机了,由于台数数量变化,会导致hash取余全部数据重新洗牌。

    2 一致性哈希算法分区

    提出一致性Hash解决方案,目的是当服务器个数发生变动时,尽量减少影响客户端到服务器的映射关系。

    2.1 一致性哈希环

            一致性哈希算法必然有个hash函数并按照算法产生hash值,这个算法的所有可能哈希值会构成一个全量集,这个集合可以成为一个hash空间[0,2^32-1],这个是一个线性空间,但是在算法中,我们通过适当的逻辑控制将它首尾相连(0 = 2^32),这样让它逻辑上形成了一个环形空间。

            它也是按照使用取模的方法,前面笔记介绍的节点取模法是对节点(服务器)的数量进行取模。而一致性Hash算法是对2^32取模,简单来说, 一致性Hash算法将整个哈希值空间组织成一个虚拟的圆环 ,如假设某哈希函数H的值空间为0-2^32-1(即哈希值是一个32位无符号整形),整个哈希环如下图:整个空间 按顺时针方向组织 ,圆环的正上方的点代表0,0点右侧的第一个点代表1,以此类推,2、3、4、……直到2^32-1,也就是说0点左侧的第一个点代表2^32-1, 0和2^32-1在零点中方向重合,我们把这个由2^32个点组成的圆环称为Hash环。Redis数据库分布式的示例分析

    Redis数据库分布式的示例分析

    2.2 节点映射

     将集群中各个IP节点映射到环上的某一个位置。

       将各个服务器使用Hash进行一个哈希,具体可以选择服务器的IP或主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置。假如4个节点NodeA、B、C、D,经过IP地址的 哈希函数 计算(hash(ip)),使用IP地址哈希后在环空间的位置如下:

    Redis数据库分布式的示例分析

    2.3 落键规则

            当我们需要存储一个kv键值对时,首先计算key的hash值,hash(key),将这个key使用相同的函数Hash计算出哈希值并确定此数据在环上的位置, 从此位置沿环顺时针行走 ,第一台遇到的服务器就是其应该定位到的服务器,并将该键值对存储在该节点上。

            如我们有Object A、Object B、Object C、Object D四个数据对象,经过哈希计算后,在环空间上的位置如下:根据一致性Hash算法,数据A会被定为到Node A上,B被定为到Node B上,C被定为到Node C上,D被定为到Node D上。

    Redis数据库分布式的示例分析

     2.4 优缺点

    优点:容错性和扩展性

    容错性:

            假设Node C宕机,可以看到此时对象A、B、D不会受到影响,只有C对象被重定位到Node D。一般的,在一致性Hash算法中,如果一台服务器不可用,则 受影响的数据仅仅是此服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据 ,其它不会受到影响。简单说,就是C挂了,受到影响的只是B、C之间的数据,并且这些数据会转移到D进行存储。

    Redis数据库分布式的示例分析

     缺点:数据倾斜(节点少不宜)

            一致性Hash算法在服务 节点太少时 ,容易因为节点分布不均匀而造成 数据倾斜 (被缓存的对象大部分集中缓存在某一台服务器上)问题,

    例如系统中只有两台服务器:

    Redis数据库分布式的示例分析

    3 哈希槽计算

    为了解决一致性哈希算法的倾斜问题

    解决均匀分配的问题, 在数据和节点之间又加入了一层,把这层称为哈希槽(slot),用于管理数据和节点之间的关系 ,现在就相当于节点上放的是槽,槽里放的是数据。

    Redis数据库分布式的示例分析

    槽解决的是粒度问题,相当于把粒度变大了,这样便于数据移动。

    哈希解决的是映射问题,使用key的哈希值来计算所在的槽,便于数据分配。

    一个集群只能有16384个槽,编号0-16383(0-2^14-1)。这些槽会分配给集群中的所有主节点,分配策略没有要求。可以指定哪些编号的槽分配给哪个主节点。集群会记录节点和槽的对应关系。解决了节点和槽的关系后,接下来就需要对key求哈希值,然后对16384取余,余数是几key就落入对应的槽里。slot = CRC16(key) % 16384。以槽为单位移动数据,因为槽的数目是固定的,处理起来比较容易,这样数据移动问题就解决了。

            Redis 集群中内置了 16384 个哈希槽,redis 会根据节点数量大致均等的将哈希槽映射到不同的节点。当需要在 Redis 集群中放置一个 key-value时,redis 先对 key 使用 crc16 算法算出一个结果,然后把结果对 16384 求余数,这样每个 key 都会对应一个编号在 0-16383 之间的哈希槽,也就是映射到某个节点上。如下代码,key之A 、B在Node2, key之C落在Node3上

    Redis数据库分布式的示例分析

    Redis数据库分布式的示例分析

    感谢各位的阅读!关于“Redis数据库分布式的示例分析”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!

    免责声明:

    ① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

    ② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

    Redis数据库分布式的示例分析

    下载Word文档到电脑,方便收藏和打印~

    下载Word文档

    猜你喜欢

    Redis数据库分布式的示例分析

    这篇文章给大家分享的是有关Redis数据库分布式的示例分析的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。问题:1-2亿数据需要缓存,如何设计?1 哈希取余分区2亿条记录就是2亿个k,v,假设有3台机器构成一个集群
    2023-06-28

    Redis中分布式锁Redlock的示例分析

    这篇文章主要介绍了Redis中分布式锁Redlock的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。Redlock实现库Java Redisson Star 9458
    2023-06-16

    Redis内存数据库示例分析

    Redis本身的内容比较复杂。如果你上来,你应该研究一个细节点,比如连接池和数据结构。虽然可以直接了解某一点的详细来源内容,甚至尽快解决一些意外,但是容易淹没在失眠的细节中,整体控制不了Redis
    2022-12-19

    JPA多数据源分布式事务的示例分析

    这篇文章主要介绍了JPA多数据源分布式事务的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。问题背景在解决mysql字段脱敏处理时,结合sharding-jdbc的脱敏
    2023-06-29

    Redis分布式锁实例分析讲解

    目录1 一人一单并发安全问题2 分布式锁的原理和实现2.1 什么是分布式锁2.2 分布式锁的实现1 一人一单并发安全问题之前一人一单的业务使用的悲观锁,在分布式系统下,是无法生效的。理想的情况下是这样的:一个线程成功获取互斥锁,并对查询
    2022-12-06

    redis实现分布式锁实例分析

    本文小编为大家详细介绍“redis实现分布式锁实例分析”,内容详细,步骤清晰,细节处理妥当,希望这篇“redis实现分布式锁实例分析”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。1、业务场景引入模拟一个电商系统,
    2023-06-29

    SQL Server数据库分区分表的示例分析

    这篇文章主要介绍SQL Server数据库分区分表的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!1、 需求说明将数据库Demo中的表按照日期字段进行水平分区分表。要求数据文件按一年一个文件存储,且分区的分割
    2023-06-14

    redis分布式锁的实现原理实例分析

    这篇文章主要介绍了redis分布式锁的实现原理实例分析的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇redis分布式锁的实现原理实例分析文章都会有所收获,下面我们一起来看看吧。首先,为了确保分布式锁可用,我们至
    2023-06-29

    编程热搜

    • Python 学习之路 - Python
      一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
      Python 学习之路 - Python
    • chatgpt的中文全称是什么
      chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
      chatgpt的中文全称是什么
    • C/C++中extern函数使用详解
    • C/C++可变参数的使用
      可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
      C/C++可变参数的使用
    • css样式文件该放在哪里
    • php中数组下标必须是连续的吗
    • Python 3 教程
      Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
      Python 3 教程
    • Python pip包管理
      一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
      Python pip包管理
    • ubuntu如何重新编译内核
    • 改善Java代码之慎用java动态编译

    目录