我的编程空间,编程开发者的网络收藏夹
学习永远不晚

怎么理解PostgreSQL的分区表

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

怎么理解PostgreSQL的分区表

本篇内容主要讲解“怎么理解PostgreSQL的分区表”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“怎么理解PostgreSQL的分区表”吧!

在PG中,分区表通过"继承"的方式实现,这里就会存在一个问题,就是在插入数据时,PG如何确定数据应该插入到哪个目标分区?在PG中,通过函数ExecPrepareTupleRouting为路由待插入的元组做准备,主要的目的是确定元组所在的分区。

一、数据结构

ModifyTable
ModifyTable Node
通过插入、更新或删除,将子计划生成的行应用到结果表。


typedef struct ModifyTable
{
    Plan        plan;
    CmdType     operation;      
    bool        canSetTag;      
    Index       nominalRelation;    
    Index       rootRelation;   
    bool        partColsUpdated;    
    List       *resultRelations;    
    int         resultRelIndex; 
    int         rootResultRelIndex; 
    List       *plans;          
    List       *withCheckOptionLists;   
    List       *returningLists; 
    List       *fdwPrivLists;   
    Bitmapset  *fdwDirectModifyPlans;   
    List       *rowMarks;       
    int         epqParam;       
    OnConflictAction onConflictAction;  
    List       *arbiterIndexes; 
    List       *onConflictSet;  
    Node       *onConflictWhere;    
    Index       exclRelRTI;     
    List       *exclRelTlist;   
} ModifyTable;

ResultRelInfo
ResultRelInfo结构体
每当更新一个现有的关系时,我们必须更新关系上的索引,也许还需要触发触发器。ResultRelInfo保存关于结果关系所需的所有信息,包括索引。


typedef struct ResultRelInfo
{
    NodeTag     type;

    
    //RTE索引
    Index       ri_RangeTableIndex;

    
    //结果/目标relation的描述符
    Relation    ri_RelationDesc;

    
    //目标关系中索引数目
    int         ri_NumIndices;

    
    //索引的关系描述符数组(索引视为一个relation)
    RelationPtr ri_IndexRelationDescs;

    
    //索引的键/属性数组
    IndexInfo **ri_IndexRelationInfo;

    
    //触发的索引
    TriggerDesc *ri_TrigDesc;

    
    //触发器函数(缓存)
    FmgrInfo   *ri_TrigFunctions;

    
    //WHEN表达式状态的触发器数组
    ExprState **ri_TrigWhenExprs;

    
    //可选的触发器运行期度量器
    Instrumentation *ri_TrigInstrument;

    
    //FDW回调函数
    struct FdwRoutine *ri_FdwRoutine;

    
    //可用于存储FDW的私有状态
    void       *ri_FdwState;

    
    //直接更新FDW时为T
    bool        ri_usesFdwDirectModify;

    
    //WithCheckOption链表
    List       *ri_WithCheckOptions;

    
    //WithCheckOption表达式链表
    List       *ri_WithCheckOptionExprs;

    
    //约束检查表达式状态数组
    ExprState **ri_ConstraintExprs;

    
    //用于从元组中删除junk属性
    JunkFilter *ri_junkFilter;

    
    //RETURNING表达式链表
    List       *ri_returningList;

    
    //用于计算RETURNING链表
    ProjectionInfo *ri_projectReturning;

    
    //用于检查冲突的仲裁器索引的列表
    List       *ri_onConflictArbiterIndexes;

    
    //ON CONFLICT解析状态
    OnConflictSetState *ri_onConflict;

    
    //分区检查表达式链表
    List       *ri_PartitionCheck;

    
    //分区检查表达式状态
    ExprState  *ri_PartitionCheckExpr;

    
    //分区root根表描述符
    Relation    ri_PartitionRoot;

    
    //额外的分区元组路由信息
    struct PartitionRoutingInfo *ri_PartitionInfo;
} ResultRelInfo;

PartitionRoutingInfo
PartitionRoutingInfo结构体
分区路由信息,用于将元组路由到表分区的结果关系信息。


typedef struct PartitionRoutingInfo
{
    
    TupleConversionMap *pi_RootToPartitionMap;

    
    TupleConversionMap *pi_PartitionToRootMap;

    
    TupleTableSlot *pi_PartitionTupleSlot;
} PartitionRoutingInfo;

TupleConversionMap
TupleConversionMap结构体,用于存储元组转换映射信息.

typedef struct TupleConversionMap
{
    TupleDesc   indesc;         
    TupleDesc   outdesc;        
    AttrNumber *attrMap;        
    Datum      *invalues;       
    bool       *inisnull;       //是否为NULL标记数组
    Datum      *outvalues;      
    bool       *outisnull;      //null标记
} TupleConversionMap;

二、源码解读

ExecPrepareTupleRouting函数确定要插入slot中的tuple所属的分区,同时修改mtstate和estate等相关信息,为后续实际的插入作准备。


static TupleTableSlot *
ExecPrepareTupleRouting(ModifyTableState *mtstate,
                        EState *estate,
                        PartitionTupleRouting *proute,
                        ResultRelInfo *targetRelInfo,
                        TupleTableSlot *slot)
{
    ModifyTable *node;//ModifyTable节点
    int         partidx;//分区索引
    ResultRelInfo *partrel;//ResultRelInfo结构体指针(数组)
    HeapTuple   tuple;//元组

    
    partidx = ExecFindPartition(targetRelInfo,
                                proute->partition_dispatch_info,
                                slot,
                                estate);
    Assert(partidx >= 0 && partidx < proute->num_partitions);

    
    partrel = proute->partitions[partidx];
    if (partrel == NULL)
        partrel = ExecInitPartitionInfo(mtstate, targetRelInfo,
                                        proute, estate,
                                        partidx);

    
    if (!partrel->ri_PartitionReadyForRouting)
    {
        
        //验证分区是否可用于INSERT
        CheckValidResultRel(partrel, CMD_INSERT);

        
        //设置将元组路由到分区所需的信息。
        ExecInitRoutingInfo(mtstate, estate, proute, partrel, partidx);
    }

    
    estate->es_result_relation_info = partrel;

    
    //从给定的slot中获取heap tuple
    tuple = ExecMaterializeSlot(slot);

    
    if (mtstate->mt_transition_capture != NULL)
    {
        if (partrel->ri_TrigDesc &&
            partrel->ri_TrigDesc->trig_insert_before_row)
        {
            
            mtstate->mt_transition_capture->tcs_original_insert_tuple = NULL;
            mtstate->mt_transition_capture->tcs_map =
                TupConvMapForLeaf(proute, targetRelInfo, partidx);
        }
        else
        {
            
            mtstate->mt_transition_capture->tcs_original_insert_tuple = tuple;
            mtstate->mt_transition_capture->tcs_map = NULL;
        }
    }
    if (mtstate->mt_oc_transition_capture != NULL)
    {
        mtstate->mt_oc_transition_capture->tcs_map =
            TupConvMapForLeaf(proute, targetRelInfo, partidx);
    }

    
    ConvertPartitionTupleSlot(proute->parent_child_tupconv_maps[partidx],
                              tuple,
                              proute->partition_tuple_slot,
                              &slot);

    
    //如为ON CONFLICT DO UPDATE模式,则初始化相关信息
    Assert(mtstate != NULL);
    node = (ModifyTable *) mtstate->ps.plan;
    if (node->onConflictAction == ONCONFLICT_UPDATE)
    {
        Assert(mtstate->mt_existing != NULL);
        ExecSetSlotDescriptor(mtstate->mt_existing,
                              RelationGetDescr(partrel->ri_RelationDesc));
        Assert(mtstate->mt_conflproj != NULL);
        ExecSetSlotDescriptor(mtstate->mt_conflproj,
                              partrel->ri_onConflict->oc_ProjTupdesc);
    }

    return slot;
}


HeapTuple
ExecFetchSlotHeapTuple(TupleTableSlot *slot, bool materialize, bool *shouldFree)
{
    
    Assert(slot != NULL);
    Assert(!TTS_EMPTY(slot));

    
    //物化元组,以便slot“拥有”它(如要求)。
    if (materialize)
        slot->tts_ops->materialize(slot);

    if (slot->tts_ops->get_heap_tuple == NULL)
    {
        if (shouldFree)
            *shouldFree = true;
        return slot->tts_ops->copy_heap_tuple(slot);//返回slot拷贝
    }
    else
    {
        if (shouldFree)
            *shouldFree = false;
        return slot->tts_ops->get_heap_tuple(slot);//直接返回slot
    }
}

三、跟踪分析

测试脚本如下

-- Hash Partition
drop table if exists t_hash_partition;
create table t_hash_partition (c1 int not null,c2  varchar(40),c3 varchar(40)) partition by hash(c1);
create table t_hash_partition_1 partition of t_hash_partition for values with (modulus 6,remainder 0);
create table t_hash_partition_2 partition of t_hash_partition for values with (modulus 6,remainder 1);
create table t_hash_partition_3 partition of t_hash_partition for values with (modulus 6,remainder 2);
create table t_hash_partition_4 partition of t_hash_partition for values with (modulus 6,remainder 3);
create table t_hash_partition_5 partition of t_hash_partition for values with (modulus 6,remainder 4);
create table t_hash_partition_6 partition of t_hash_partition for values with (modulus 6,remainder 5);

-- delete from t_hash_partition where c1 = 0;
insert into t_hash_partition(c1,c2,c3) VALUES(0,'HASH0','HAHS0');

启动gdb,设置断点,进入ExecPrepareTupleRouting

(gdb) b ExecPrepareTupleRouting
Breakpoint 1 at 0x710b1e: file nodeModifyTable.c, line 1712.
(gdb) c
Continuing.

Breakpoint 1, ExecPrepareTupleRouting (mtstate=0x1e4de60, estate=0x1e4daf8, proute=0x1e4eb48, targetRelInfo=0x1e4dd48, 
    slot=0x1e4e4e0) at nodeModifyTable.c:1712
1712        partidx = ExecFindPartition(targetRelInfo,

查看函数调用栈
ExecPrepareTupleRouting在ExecModifyTable Node中被调用,为后续的插入作准备.

(gdb) bt
#0  ExecPrepareTupleRouting (mtstate=0x1e4de60, estate=0x1e4daf8, proute=0x1e4eb48, targetRelInfo=0x1e4dd48, slot=0x1e4e4e0)
    at nodeModifyTable.c:1712
#1  0x0000000000711602 in ExecModifyTable (pstate=0x1e4de60) at nodeModifyTable.c:2157
#2  0x00000000006e4c30 in ExecProcNodeFirst (node=0x1e4de60) at execProcnode.c:445
#3  0x00000000006d9974 in ExecProcNode (node=0x1e4de60) at ../../../class="lazy" data-src/include/executor/executor.h:237
#4  0x00000000006dc22d in ExecutePlan (estate=0x1e4daf8, planstate=0x1e4de60, use_parallel_mode=false, 
    operation=CMD_INSERT, sendTuples=false, numberTuples=0, direction=ForwardScanDirection, dest=0x1e67e90, 
    execute_once=true) at execMain.c:1723
#5  0x00000000006d9f5c in standard_ExecutorRun (queryDesc=0x1e39d68, direction=ForwardScanDirection, count=0, 
    execute_once=true) at execMain.c:364
#6  0x00000000006d9d7f in ExecutorRun (queryDesc=0x1e39d68, direction=ForwardScanDirection, count=0, execute_once=true)
    at execMain.c:307
#7  0x00000000008cbdb3 in ProcessQuery (plan=0x1e67d18, 
    sourceText=0x1d60ec8 "insert into t_hash_partition(c1,c2,c3) VALUES(0,'HASH0','HAHS0');", params=0x0, queryEnv=0x0, 
    dest=0x1e67e90, completionTag=0x7ffdcf148b20 "") at pquery.c:161
#8  0x00000000008cd6f9 in PortalRunMulti (portal=0x1dc6538, isTopLevel=true, setHoldSnapshot=false, dest=0x1e67e90, 
    altdest=0x1e67e90, completionTag=0x7ffdcf148b20 "") at pquery.c:1286
#9  0x00000000008cccb9 in PortalRun (portal=0x1dc6538, count=9223372036854775807, isTopLevel=true, run_once=true, 
    dest=0x1e67e90, altdest=0x1e67e90, completionTag=0x7ffdcf148b20 "") at pquery.c:799
#10 0x00000000008c6b1e in exec_simple_query (
    query_string=0x1d60ec8 "insert into t_hash_partition(c1,c2,c3) VALUES(0,'HASH0','HAHS0');") at postgres.c:1145
#11 0x00000000008cae70 in PostgresMain (argc=1, argv=0x1d8aba8, dbname=0x1d8aa10 "testdb", username=0x1d5dba8 "xdb")
    at postgres.c:4182

找到该元组所在的分区

(gdb) n
1716        Assert(partidx >= 0 && partidx < proute->num_partitions);
(gdb) p partidx
$1 = 2

获取与所选分区对应的ResultRelInfo;如果还没有,则初始化

(gdb) n
1722        partrel = proute->partitions[partidx];
(gdb) 
1723        if (partrel == NULL)
(gdb) p *partrel
Cannot access memory at address 0x0
(gdb) n
1724            partrel = ExecInitPartitionInfo(mtstate, targetRelInfo,

初始化后的partrel

(gdb) p *partrel
$2 = {type = T_ResultRelInfo, ri_RangeTableIndex = 1, ri_RelationDesc = 0x1e7c940, ri_NumIndices = 0, 
  ri_IndexRelationDescs = 0x0, ri_IndexRelationInfo = 0x0, ri_TrigDesc = 0x0, ri_TrigFunctions = 0x0, 
  ri_TrigWhenExprs = 0x0, ri_TrigInstrument = 0x0, ri_FdwRoutine = 0x0, ri_FdwState = 0x0, ri_usesFdwDirectModify = false, 
  ri_WithCheckOptions = 0x0, ri_WithCheckOptionExprs = 0x0, ri_ConstraintExprs = 0x0, ri_junkFilter = 0x0, 
  ri_returningList = 0x0, ri_projectReturning = 0x0, ri_onConflictArbiterIndexes = 0x0, ri_onConflict = 0x0, 
  ri_PartitionCheck = 0x1e4f538, ri_PartitionCheckExpr = 0x0, ri_PartitionRoot = 0x1e7c2f8, 
  ri_PartitionReadyForRouting = true}

目标分区描述符-->t_hash_partition_3

(gdb) p *partrel->ri_RelationDesc
$3 = {rd_node = {spcNode = 1663, dbNode = 16402, relNode = 16995}, rd_smgr = 0x1e34510, rd_refcnt = 1, rd_backend = -1, 
  rd_islocaltemp = false, rd_isnailed = false, rd_isvalid = true, rd_indexvalid = 0 '\000', rd_statvalid = false, 
  rd_createSubid = 0, rd_newRelfilenodeSubid = 0, rd_rel = 0x1e7c1e0, rd_att = 0x1e7cb58, rd_id = 16995, rd_lockInfo = {
    lockRelId = {relId = 16995, dbId = 16402}}, rd_rules = 0x0, rd_rulescxt = 0x0, trigdesc = 0x0, rd_rsdesc = 0x0, 
  rd_fkeylist = 0x0, rd_fkeyvalid = false, rd_partkeycxt = 0x0, rd_partkey = 0x0, rd_pdcxt = 0x0, rd_partdesc = 0x0, 
  rd_partcheck = 0x1e7aa30, rd_indexlist = 0x0, rd_oidindex = 0, rd_pkindex = 0, rd_replidindex = 0, rd_statlist = 0x0, 
  rd_indexattr = 0x0, rd_projindexattr = 0x0, rd_keyattr = 0x0, rd_pkattr = 0x0, rd_idattr = 0x0, rd_projidx = 0x0, 
  rd_pubactions = 0x0, rd_options = 0x0, rd_index = 0x0, rd_indextuple = 0x0, rd_amhandler = 0, rd_indexcxt = 0x0, 
  rd_amroutine = 0x0, rd_opfamily = 0x0, rd_opcintype = 0x0, rd_support = 0x0, rd_supportinfo = 0x0, rd_indoption = 0x0, 
  rd_indexprs = 0x0, rd_indpred = 0x0, rd_exclops = 0x0, rd_exclprocs = 0x0, rd_exclstrats = 0x0, rd_amcache = 0x0, 
  rd_indcollation = 0x0, rd_fdwroutine = 0x0, rd_toastoid = 0, pgstat_info = 0x1de40b0}
------------------
testdb=# select oid,relname from pg_class where oid=16995;
  oid  |      relname       
-------+--------------------
 16995 | t_hash_partition_3
(1 row)  
-----------------

该分区是可路由的

(gdb) p partrel->ri_PartitionReadyForRouting
$4 = true

设置estate变量(让它看起来像是插入到分区中)/物化tuple

(gdb) n
1751        estate->es_result_relation_info = partrel;
(gdb) 
1754        tuple = ExecMaterializeSlot(slot);
(gdb) 
1760        if (mtstate->mt_transition_capture != NULL)
(gdb) p tuple
$5 = (HeapTuple) 0x1e4f4e0
(gdb) p *tuple
$6 = {t_len = 40, t_self = {ip_blkid = {bi_hi = 65535, bi_lo = 65535}, ip_posid = 0}, t_tableOid = 0, t_data = 0x1e4f4f8}
(gdb) 
(gdb) p *tuple->t_data
$7 = {t_choice = {t_heap = {t_xmin = 160, t_xmax = 4294967295, t_field3 = {t_cid = 2249, t_xvac = 2249}}, t_datum = {
      datum_len_ = 160, datum_typmod = -1, datum_typeid = 2249}}, t_ctid = {ip_blkid = {bi_hi = 65535, bi_lo = 65535}, 
    ip_posid = 0}, t_infomask2 = 3, t_infomask = 2, t_hoff = 24 '\030', t_bits = 0x1e4f50f ""}

mtstate->mt_transition_capture 为NULL,无需处理相关信息

(gdb) p mtstate->mt_transition_capture 
$8 = (struct TransitionCaptureState *) 0x0
1783        if (mtstate->mt_oc_transition_capture != NULL)
(gdb)

如需要,转换元组

1792        ConvertPartitionTupleSlot(proute->parent_child_tupconv_maps[partidx],
(gdb) 
1798        Assert(mtstate != NULL);
(gdb) 
1799        node = (ModifyTable *) mtstate->ps.plan;
(gdb) p *mtstate
$9 = {ps = {type = T_ModifyTableState, plan = 0x1e59838, state = 0x1e4daf8, ExecProcNode = 0x711056 <ExecModifyTable>, 
    ExecProcNodeReal = 0x711056 <ExecModifyTable>, instrument = 0x0, worker_instrument = 0x0, worker_jit_instrument = 0x0, 
    qual = 0x0, lefttree = 0x0, righttree = 0x0, initPlan = 0x0, subPlan = 0x0, chgParam = 0x0, 
    ps_ResultTupleSlot = 0x1e4ede8, ps_ExprContext = 0x0, ps_ProjInfo = 0x0, scandesc = 0x0}, operation = CMD_INSERT, 
  canSetTag = true, mt_done = false, mt_plans = 0x1e4e078, mt_nplans = 1, mt_whichplan = 0, resultRelInfo = 0x1e4dd48, 
  rootResultRelInfo = 0x0, mt_arowmarks = 0x1e4e098, mt_epqstate = {estate = 0x0, planstate = 0x0, origslot = 0x1e4e4e0, 
    plan = 0x1e59588, arowMarks = 0x0, epqParam = 0}, fireBSTriggers = false, mt_existing = 0x0, mt_excludedtlist = 0x0, 
  mt_conflproj = 0x0, mt_partition_tuple_routing = 0x1e4eb48, mt_transition_capture = 0x0, mt_oc_transition_capture = 0x0, 
  mt_per_subplan_tupconv_maps = 0x0}

返回slot,完成调用

(gdb) n
1800        if (node->onConflictAction == ONCONFLICT_UPDATE)
(gdb) 
1810        return slot;
(gdb) 
1811    }

到此,相信大家对“怎么理解PostgreSQL的分区表”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

怎么理解PostgreSQL的分区表

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

PostgreSQL怎么创建分区表详解

目录前言列分区表范围分区表总结前言PG 假如我们想像Hive那也创www.cppcns.com建动态分区是不能实现的。 那么需要我们手动通过脚本来创建分区表,创建分区表必须要创建主表和分区表。因此我们可以根据我们需求提前
2022-06-23

递归查询与PostgreSQL的分区表管理

递归查询(Recursive Query)是一种在数据库中查询具有层次结构或递归关联的数据的方法在PostgreSQL中,可以使用递归公共表表达式(Recursive Common Table Expressions,简称CTE)来实现递
递归查询与PostgreSQL的分区表管理
2024-09-08

PostgreSQL表分区的方式有哪些

这篇文章主要讲解了“PostgreSQL表分区的方式有哪些”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“PostgreSQL表分区的方式有哪些”吧!目录一、简介二、三种方式2.1、Range
2023-06-20

oracle怎么批量删除分区表的分区

在Oracle中,可以使用以下步骤来批量删除分区表的分区:首先,连接到数据库并登录到sys用户或具有适当权限的用户。使用ALTER TABLE语句来删除分区。例如,要删除名为table_name的表的所有分区,可以使用以下语句:ALTER
oracle怎么批量删除分区表的分区
2024-04-20

oracle怎么查看表的分区

问题:如何查看 oracle 表的分区?步骤:查询数据字典视图 all_tab_partitions,指定表名。结果显示分区名称、上边界值和下边界值。如何查看 Oracle 表的分区在 Oracle 数据库中,可以创建分区表,将大型数据表
oracle怎么查看表的分区
2024-05-14

编程热搜

目录