我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python中BackgroundScheduler和BlockingScheduler的区别

短信预约 信息系统项目管理师 报名、考试、查分时间动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python中BackgroundScheduler和BlockingScheduler的区别

目录
  • 1、基本的定时调度
  • 2、BlockingScheduler与BackgroundScheduler区别

APScheduler最基本的用法: “定时几秒后启动job”
两种调度器: BackgroundScheduler和BlockingScheduler的区别,
job执行时间大于定时调度时间特殊情况的问题及解决方法
每个job都会以thread的方式被调度。

1、基本的定时调度

APScheduler是python的一个定时任务调度框架,能实现类似linux下crontab类型的任务,使用起来比较方便。它提供基于固定时间间隔、日期以及crontab配置类似的任务调度,并可以持久化任务,或将任务以daemon方式运行。

下面是一个最基本的使用示例:


from apscheduler.schedulers.blocking import BlockingScheduler

def job():
    print('job 3s')

if __name__=='__main__':
    sched = BlockingScheduler(timezone='MST')
    sched.add_job(job, 'interval', id='3_second_job', seconds=3)
    sched.start()

它能实现每隔3s就调度job()运行一次,所以程序每隔3s就输出'job 3s'。通过修改add_job()的参数seconds,就可以改变任务调度的间隔时间。

2、BlockingScheduler与BackgroundScheduler区别

APScheduler中有很多种不同类型的调度器,BlockingScheduler与BackgroundScheduler是其中最常用的两种调度器。那他们之间有什么区别呢? 简单来说,区别主要在于BlockingScheduler会阻塞主线程的运行,而BackgroundScheduler不会阻塞。所以,我们在不同的情况下,选择不同的调度器:

BlockingScheduler: 调用start函数后会阻塞当前线程。当调度器是你应用中唯一要运行的东西时(如上例)使用。
BackgroundScheduler: 调用start后主线程不会阻塞。当你不运行任何其他框架时使用,并希望调度器在你应用的后台执行。
下面用两个例子来更直观的说明两者的区别。

BlockingScheduler例子


from apscheduler.schedulers.blocking import BlockingScheduler
import time

def job():
    print('job 3s')


if __name__=='__main__':

    sched = BlockingScheduler(timezone='MST')
    sched.add_job(job, 'interval', id='3_second_job', seconds=3)
    sched.start()

    while(True): # 不会被执行到
        print('main 1s')
        time.sleep(1)

运行这个程序,我们得到如下的输出:

job 3s
job 3s
job 3s
job 3s 

可见,BlockingScheduler调用start函数后会阻塞当前线程,导致主程序中while循环不会被执行到。

BackgroundScheduler例子


from apscheduler.schedulers.background import BackgroundScheduler
import time

def job():
    print('job 3s')


if __name__=='__main__':

    sched = BackgroundScheduler(timezone='MST')
    sched.add_job(job, 'interval', id='3_second_job', seconds=3)
    sched.start()

    while(True):
        print('main 1s')
        time.sleep(1)

可见,BackgroundScheduler调用start函数后并不会阻塞当前线程,所以可以继续执行主程序中while循环的逻辑。

main 1s
main 1s
main 1s
job 3s
main 1s
main 1s
main 1s
job 3s 

通过这个输出,我们也可以发现,调用start函数后,job()并不会立即开始执行。而是等待3s后,才会被调度执行。
如何让job在start()后就开始运行
如何才能让调度器调用start函数后,job()就立即开始执行呢?

其实APScheduler并没有提供很好的方法来解决这个问题,但有一种最简单的方式,就是在调度器start之前,就运行一次job(),如下


from apscheduler.schedulers.background import BackgroundScheduler
import time

def job():
    print('job 3s')


if __name__=='__main__':
    job() # 执行一次就好了哟
    sched = BackgroundScheduler(timezone='MST')
    sched.add_job(job, 'interval', id='3_second_job', seconds=3)
    sched.start()

    while(True):
        print('main 1s')
        time.sleep(1)

这样就能得到如下的输出

job 3s
main 1s
main 1s
main 1s
job 3s
main 1s
main 1s
main 1s

这样虽然没有绝对做到“让job在start()后就开始运行”,但也能做到“不等待调度,而是刚开始就运行job”。

如果job执行时间过长会怎么样
如果执行job()的时间需要5s,但调度器配置为每隔3s就调用一下job(),会发生什么情况呢?我们写了如下例子:


from apscheduler.schedulers.background import BackgroundScheduler
import time

def job():
    print('job 3s')
    time.sleep(5)

if __name__=='__main__':

    sched = BackgroundScheduler(timezone='MST')
    sched.add_job(job, 'interval', id='3_second_job', seconds=3)
    sched.start()

    while(True):
        print('main 1s')
        time.sleep(1)

运行这个程序,我们得到如下的输出:

main 1s
main 1s
main 1s
job 3s
main 1s
main 1s
main 1s
Execution of job "job (trigger: interval[0:00:03], next run at: 2018-05-07 02:44:29 MST)" skipped: maximum number of running instances reached (1)
main 1s
main 1s
main 1s
job 3s
main 1s

可见,3s时间到达后,并不会“重新启动一个job线程”,而是会跳过该次调度,等到下一个周期(再等待3s),又重新调度job()。

为了能让多个job()同时运行,我们也可以配置调度器的参数max_instances,如下例,我们允许2个job()同时运行:


from apscheduler.schedulers.background import BackgroundScheduler
import time

def job():
    print('job 3s')
    time.sleep(5)

if __name__=='__main__':
    job_defaults = { 'max_instances': 2 }
    sched = BackgroundScheduler(timezone='MST', job_defaults=job_defaults)
    sched.add_job(job, 'interval', id='3_second_job', seconds=3)
    sched.start()

    while(True):
        print('main 1s')
        time.sleep(1)

运行程序,我们得到如下的输出:

main 1s
main 1s
main 1s
job 3s
main 1s
main 1s
main 1s
job 3s
main 1s
main 1s
main 1s
job 3s

每个job是怎么被调度的

通过上面的例子,我们发现,调度器是定时调度job()函数,来实现调度的。

那job()函数会被以进程的方式调度运行,还是以线程来运行呢?

为了弄清这个问题,我们写了如下程序:


from apscheduler.schedulers.background import BackgroundScheduler
import time,os,threading

def job():
    print('job thread_id-{0}, process_id-{1}'.format(threading.get_ident(), os.getpid()))
    time.sleep(50)

if __name__=='__main__':
    job_defaults = { 'max_instances': 20 }
    sched = BackgroundScheduler(timezone='MST', job_defaults=job_defaults)
    sched.add_job(job, 'interval', id='3_second_job', seconds=3)
    sched.start()

    while(True):
        print('main 1s')
        time.sleep(1)

运行程序,我们得到如下的输出:

main 1s
main 1s
main 1s
job thread_id-10644, process_id-8872
main 1s
main 1s
main 1s
job thread_id-3024, process_id-8872
main 1s
main 1s
main 1s
job thread_id-6728, process_id-8872
main 1s
main 1s
main 1s
job thread_id-11716, process_id-8872

可见,每个job()的进程ID都相同,但线程ID不同。所以,job()最终是以线程的方式被调度执行。

到此这篇关于python中BackgroundScheduler和BlockingScheduler的区别 的文章就介绍到这了,更多相关python BackgroundScheduler BlockingScheduler内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python中BackgroundScheduler和BlockingScheduler的区别

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python中BackgroundScheduler和BlockingScheduler的区别

目录1、基本的定时调度2、BlockingScheduler与BackgroundScheduler区别APScheduler最基本的用法: “定时几秒后启动job” 两种调度器: BackgroundScheduler和BlockingS
2022-06-02

python中BackgroundScheduler和BlockingScheduler的区别是什么

本篇内容介绍了“python中BackgroundScheduler和BlockingScheduler的区别是什么”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔
2023-06-20

Python中 is 和 == 区别

Python中is和==的区别,如下:环境是在IPython做的测试在Python中 is是一个对象标识符(object identity ),== 表示相(equality);is 是通过对象所指向的内存地址是否相等来进行判断== 则是通
2023-01-31

Python中sort()和sorted()的区别

Python中sort()和sorted()的区别:1、使用对象不同;2、排序方式不同;3、返回值不同;4、是否改变原始数据;5、适用范围不同;sort()方法是列表对象的方法,只能用于列表的排序,而sorted()是内建函数,可以对任何可迭代对象进行排序。
Python中sort()和sorted()的区别
2023-10-29

python中%r和%s的区别

%r用rper()方法处理对象%s用str()方法处理对象有些情况下,两者处理的结果是一样的,比如说处理int型对象。例一:[python] view plaincopyprint "I am %d years old." % 22  pr
2023-01-31

Python中的_init__和_new__的区别

__init__和__new__的区别:1、定义;2、调用时机;3、参数;4、返回值;5、应用场景;__init__是Python中的一个构造函数,它在对象创建后被调用,用来对对象的属性进行初始化,而__new__是Python中的一个静态方法,它在对象创建前被调用,用来生成并返回一个新的对象实例。
Python中的_init__和_new__的区别
2023-10-29

python中sort和sorted区别

sort() 和 sorted() 在 python 中都是排序函数,但有以下区别:sort() 原地排序原始序列,不返回任何值,而 sorted() 返回一个新序列。sort() 是原地排序,sorted() 是非原地排序,不会修改原始序
python中sort和sorted区别
2024-05-15

python类中super()和__init__()的区别

单继承时super()和__init__()实现的功能是类似的class Base(object): def __init__(self): print 'Base create' class childA(Base): def __ini
2022-06-04

python和anaconda的区别

python  ['paɪθən]  &  anaconda  [,ænə'kɑndə]Anacondas原产于南美洲,而Python则天然存在于亚洲和非洲的热带地区。相比之下,Anaconda更重,但python更长。作为蛇,Python
2023-01-31

python和C的区别

python和c的主要区别在于:python是一种动态类型语言,而c是一种静态类型语言。python是一种解释性语言,而c是一种编译性语言。c通常比python快得多。python的语法简单易懂,而c的语法更加复杂。python通常用于快速
python和C的区别
2024-04-20

python和pycharm的区别

Python和PyCharm是两个不同的概念,它们的区别如下:1、Python是一种编程语言,而PyCharm是一款Python集成开发环境;2、Python可以运行在各种不同的开发环境中,而PyCharm是专门为Python开发而设计的I
python和pycharm的区别
2023-12-19

Python 2和Python 3的区别

原文转载自:http://www.pythontip.com/blog/post/13118/1.性能 Py3.0运行 pystone benchmark的速度比Py2.5慢30%。Guido认为Py3.0有极大的优化空间,在字符串和×××
2023-01-31

聊聊Python中end=和sep=的区别

end: 默认是换行,表示两个字符串最后以什么结尾。 eg: 换行 end="\n" sep: 默认是空格,表示两个字符串之间用什么分割。 eg: 空格 sep=" "补充:python 中的 print(x, end=) 和 print(
2022-06-02

python中response.text 和response.content的区别详解

1.response.text - 类型:str - 解码类型: 根据HTTP 头部对响应的编码作出有根据的推测,推测的文本编码 - 如何修改编码方式:response.encoding=”gbk” 2. response.content
2022-06-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录