使用Python怎么求逆矩阵
使用Python怎么求逆矩阵?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。
import numpy as np kernel = np.array([1, 1, 1, 2]).reshape((2, 2))print(kernel)print(np.linalg.inv(kernel))
注意,Singular matrix奇异矩阵不可求逆
补充:python+numpy中矩阵的逆和伪逆的区别
定义:
对于矩阵A,如果存在一个矩阵B,使得AB=BA=E,其中E为与A,B同维数的单位阵,就称A为可逆矩阵(或者称A可逆),并称B是A的逆矩阵,简称逆阵。(此时的逆称为凯利逆)
矩阵A可逆的充分必要条件是|A|≠0。
伪逆矩阵是逆矩阵的广义形式。由于奇异矩阵或非方阵的矩阵不存在逆矩阵,但可以用函数pinv(A)求其伪逆矩阵。
基本语法为X=pinv(A),X=pinv(A,tol),其中tol为误差,pinv为pseudo-inverse的缩写:max(size(A))*norm(A)*eps。
函数返回一个与A的转置矩阵A' 同型的矩阵X,并且满足:AXA=A,XAX=X.此时,称矩阵X为矩阵A的伪逆,也称为广义逆矩阵。
pinv(A)具有inv(A)的部分特性,但不与inv(A)完全等同。
如果A为非奇异方阵,pinv(A)=inv(A),但却会耗费大量的计算时间,相比较而言,inv(A)花费更少的时间。
代码如下:
1.矩阵求逆
import numpy as npa = np.array([[1, 2], [3, 4]]) # 初始化一个非奇异矩阵(数组)print(np.linalg.inv(a)) # 对应于MATLAB中 inv() 函数# 矩阵对象可以通过 .I 求逆,但必须先使用matirx转化A = np.matrix(a)print(A.I)
2.矩阵求伪逆
import numpy as np# 定义一个奇异阵 AA = np.zeros((4, 4))A[0, -1] = 1A[-1, 0] = -1A = np.matrix(A)print(A)# print(A.I) 将报错,矩阵 A 为奇异矩阵,不可逆print(np.linalg.pinv(A)) # 求矩阵 A 的伪逆(广义逆矩阵),对应于MATLAB中 pinv() 函数
这就是矩阵的逆和伪逆的区别
截至2020/10/4,matrix函数还可以使用,但已经过时,应该是mat函数这种。
看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注编程网行业资讯频道,感谢您对编程网的支持。
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341