TensorFlow.js怎么实现AI换脸使用
这篇文章主要介绍“TensorFlow.js怎么实现AI换脸使用”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“TensorFlow.js怎么实现AI换脸使用”文章能帮助大家解决问题。
步骤 1:准备工作
在开始之前,需要确保已经安装了Node.js和npm。在终端中输入以下命令来验证:
node -vnpm -v
如果输出了相应的版本号,说明已经安装成功。
接着,需要安装一些必要的依赖包。在终端中进入项目目录,输入以下命令来安装:
npm install @tensorflow/tfjs @tensorflow-models/face-landmarks-detection @tensorflow/tfjs-nodenpm install canvas
这里要注意有一个坑,安装@tensorflow/tfjs-node的时候,需要确保你有全局安装过windows-build-tools
, 可以用npm 全局安装一下。如果安装失败,可以尝试用cnpm
尝试。
步骤 2:加载模型
加载TensorFlow.js提供的面部关键点检测模型。这个模型是识别人脸的关键点,包括眼睛、鼻子、嘴巴等等。代码如下:
// 导入所需的依赖包const tf = require('@tensorflow/tfjs-node');const faceLandmarksDetection = require('@tensorflow-models/face-landmarks-detection');// 加载面部关键点检测模型const loadModel = async () => { const model = await faceLandmarksDetection.load( faceLandmarksDetection.SupportedPackages.mediapipeFacemesh, { shouldLoadIrisModel: false } ); return model;};// 调用loadModel函数加载模型const model = await loadModel();
上述代码中作用是识别人脸的关键点,使用faceLandmarksDetection.load
方法加载模型。mediapipeFacemesh
模型可以检测出人脸的468个关键点。如果需要检测虹膜,可以将shouldLoadIrisModel
参数设置为true。最后调用loadModel
函数得到加载好的模型。
步骤 3:加载图片
接下来,需要加载需要处理的两张图片。使用canvas来完成这个任务。代码如下:
const { createCanvas, loadImage } = require('canvas');// 加载两张图片const loadImages = async () => { // 创建canvas并获取context const canvas = createCanvas(640, 480); const ctx = canvas.getContext('2d'); // 加载sourceImage const sourceImage = await loadImage('source.jpg'); canvas.width = sourceImage.width; canvas.height = sourceImage.height; ctx.drawImage(sourceImage, 0, 0); // 加载targetImage const targetImage = await loadImage('target.jpg'); canvas.width = targetImage.width; canvas.height = targetImage.height; ctx.drawImage(targetImage, 0, 0); // 返回结果 return { sourceImage, targetImage, canvas };};// 调用loadImages函数加载图片const { sourceImage, targetImage, canvas } = await loadImages();
这里假设source.jpg和target.jpg是两张需要处理的图片。
步骤 4:提取面部关键点
有了模型和图片之后,就可以提取出两张图片中的面部关键点了。提取面部关键点代码如下:
const extractFaceLandmarks = async (model, image) => { // 将image转换成tensor const tensor = tf.browser.fromPixels(image); // 使用estimateFaces方法得到关键点 const predictions = await model.estimateFaces({ input: tensor, returnTensors: false, flipHorizontal: false, predictIrises: false }); // 释放tensor占用的内存 tensor.dispose(); return predictions;};// 提取sourceImage和targetImage的面部关键点const sourceFaceLandmarks = await extractFaceLandmarks(model, sourceImage);const targetFaceLandmarks = await extractFaceLandmarks(model, targetImage);
这段代码实现了从图片中提取面部关键点的功能。通过将图片转换为tensor,然后使用estimateFaces
方法,得到包含关键点信息的数组。最后,释放tensor占用的内存。
步骤 5:应用变形
有了两张图片的面部关键点之后,就可以开始应用变形了。代码如下:
// 导入FaceMesh和Geometry2d类const { FaceMesh } = require('@mediapipe/face_mesh');const { Geometry2d } = require('@mediapipe/geometry');// 定义applyWarp函数const applyWarp = (sourceFaceLandmarks, targetFaceLandmarks, sourceImage, targetImage) => { // 创建FaceMesh、Geometry2d实例 const faceMesh = new FaceMesh(); const sourceGeometry = new Geometry2d(); const targetGeometry = new Geometry2d(); // 定义warpTriangles函数,使用Delaunay算法将source和target的关键点连接起来,得到一组三角形网格 const warpTriangles = (sourcePoints, targetPoints) => { const delaunay = d3.Delaunay.from(sourcePoints); const { triangles } = delaunay; const sourceTriangles = triangles.map(i => sourcePoints[i]); const targetTriangles = triangles.map(i => targetPoints[i]); return { sourceTriangles, targetTriangles }; }; // 对source和target的关键点应用warpTriangles函数,得到sourceTriangles和targetTriangles const { sourceTriangles, targetTriangles } = warpTriangles(sourceFaceLandmarks[0].scaledMesh, targetFaceLandmarks[0].scaledMesh); // 将sourceTriangles和targetTriangles转换为Geometry2d实例 sourceGeometry.setFromPoints(sourceTriangles.flat()); targetGeometry.setFromPoints(targetTriangles.flat()); // 计算仿射变换矩阵 const warp = sourceGeometry.getAffineTransform(targetGeometry); // 创建canvas并绘制sourceImage const { canvas } = createCanvas(sourceImage.width, sourceImage.height); const ctx = canvas.getContext('2d'); ctx.beginPath(); ctx.moveTo(sourceFaceLandmarks[0].scaledMesh[0][0], sourceFaceLandmarks[0].scaledMesh[0][1]); for (let i = 1; i < sourceFaceLandmarks[0].scaledMesh.length; i++) { ctx.lineTo(sourceFaceLandmarks[0].scaledMesh[i][0], sourceFaceLandmarks[0].scaledMesh[i][1]); } ctx.closePath(); ctx.clip(); // 将targetImage按照仿射变换矩阵映射到sourceImage上 ctx.setTransform(warp[0], warp[3], warp[1], warp[4], warp[2], warp[5]); ctx.drawImage(targetImage, 0, 0, targetImage.width, targetImage.height, 0, 0, sourceImage.width, sourceImage.height); // 将生成的图片转换为buffer并返回 return canvas.toBuffer();};// 应用applyWarp函数const result = applyWarp(sourceFaceLandmarks, targetFaceLandmarks, sourceImage, targetImage);
这里使用的是FaceMesh模型,它可以将面部关键点转换为三角形网格。然后使用Delaunay算法将两张图片中的关键点连接起来,得到一组三角形网格。最后,将sourceImage中的每个三角形,通过仿射变换映射到targetImage上,从而实现换脸的效果。将生成的图片转换为buffer,即可完成整个换脸过程。
result
变量是通过应用变形函数applyWarp
生成的图片的二进制数据流。其包含了将sourceImage中的面部特征转移到targetImage上的结果,即实现了AI换脸的效果。
用Node.js中的fs模块将result保存为图片。以下是示例代码:
const fs = require('fs');fs.writeFileSync('result.jpg', result);
将 result
保存为result.jpg
。
关于“TensorFlow.js怎么实现AI换脸使用”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注编程网行业资讯频道,小编每天都会为大家更新不同的知识点。
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341