我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python数据标准化

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python数据标准化

目录

一.数据标准化方式

1.实现中心化和正态分布的Z-Score

2.实现归一化的Max-Min

3.用于稀疏数据的MaxAbs

4.针对离群点的RobustScaler

二.Python针对以上几种标准化方法处理数据

三.总结  


一.数据标准化方式

1.实现中心化和正态分布的Z-Score

        Z-Score标准化是基于原始数据的均值和标准差进行的标准化,假设原转换的数据为x,新数据为x',那么x'=(x-mean)/std,其中mean和std为x所在列的均值和标准差。

        这种方法适合大多数类型的数据,也是很多工具的默认标准化方法。标准化之后的数据是以0为均值,方差为1的正态分布。但是Z-Score方法是一种中心化方法,会改变原有数据的分布结构,不适合用于对稀疏数据做处理。

在很多时候,数据集会存在稀疏性特征,表现为标准差小。并有很多元素的值为0.最常见的稀疏数据集是用来做协同过滤的数据集,绝大部分的数据都是0,仅有少部分数据为1。对稀疏数据做标准化,不能采用中心化的方式,否则会破坏稀疏数据的结构。

2.实现归一化的Max-Min

        Max-Min标准化方法是对原始数据进行线性变换,假设原转换的数据为x,新数据为x',那么x'=(x-min)/(max-min),其中min和max为x所在列的最小值和最大值。

        这种标准化方法的应用非常广泛,得到的数据会完全落入[0,1],区间内(Z-Score则没有类似区间),这种方法能使数据归一化而落到一定的区间内,同时还能较好地保持原有数据结构。

3.用于稀疏数据的MaxAbs

        最大值绝对值标准化(MaxAbs)即根据最大值的绝对值进行标准化,假设原转换的数据为x,新数据为x',那么x'=x/|max|,其中max为x所在列的最大值。

        MaxAbs方法跟Max-Min用法类似,也是将数据落入一定区间,但该方法的数据区间为[-1,1]。MaxAbs也具有不破坏原有数据分布结构的特点,因此也可以用于稀疏数据、稀疏的CSR或CSC矩阵。

4.针对离群点的RobustScaler

        某种情况下,假如数据集中有离群点,我们可以使用Z-Score进行标准化,但是标准化之后的数据并不理想,因为异常点的特征往往在标准化之后便容易失去离群特征。此时可以使用RobustScaler针对离群点做标准化处理,该方法对数据中心化和数据的缩放健壮性有更强的参数控制能力。

二.Python针对以上几种标准化方法处理数据

import numpy as npfrom sklearn import preprocessingimport matplotlib.pyplot as pltdata=np.loadtxt(r"F:\小橙书\chapter3\data6.txt",delimiter='\t')# Z-Score标准化zscore_scaler=preprocessing.StandardScaler()data_scaler_1=zscore_scaler.fit_transform(data)# Max-Min标准化minmax_scaler=preprocessing.MinMaxScaler()data_scaler_2=minmax_scaler.fit_transform(data)# MaxAbs标准化maxabs_scaler=preprocessing.MaxAbsScaler()data_scaler_3=maxabs_scaler.fit_transform(data)# RobustScaler准化robust_scaler=preprocessing.RobustScaler()data_scaler_4=robust_scaler.fit_transform(data)data_list=[data,data_scaler_1,data_scaler_2,data_scaler_3,data_scaler_4]scaler_list=[15,10,15,10,15,10] #创建点尺寸列表color_list=['pink','green','red','orange','blue']marker_list=['o',',','+','s','p']title_list=['source data','zscore_scaler','minmax_scaler','maxabs_scaler','robust_scaler']plt.figure(figsize=(15,8))for i,data_single in enumerate(data_list):    plt.subplot(2,3,i+1)    plt.scatter(data_single[:,0],data_single[:,-1]               ,s=scaler_list[i]               ,marker=marker_list[i]               ,c=color_list[i])    plt.title=title_list[i]plt.suptitle("row data and standardized data")plt.show()

  三.总结  

(1)如果要做中心化处理,并且对数据分布有正态需求,则使用Z-Score方法。

(2)如果要进行0-1标准化或要指定标准化后的数据分布范围,Max-Min标准化或MaxAbs标准化是比较好的选择。

(3)如果要对稀疏数据进行处理,Max-Min标准化或MaxAbs标准化仍是理想方法。

(4)如果要最大限度保留数据集中的异常,则使用RobustScaler方法。

来源地址:https://blog.csdn.net/weixin_60200880/article/details/127214706

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python数据标准化

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python数据标准化的实例分析

说明 1、将原始数据转换为均值为0,标准差在1范围内。 2、对标准化而言:如果出现异常点,由于有一定数据量,少量异常点对平均值的影响不大,因此方差变化不大。 实例def stand_demo():"""标准化:return:""" # 1.
2022-06-02

Python标准库14 数据库 (sqlite3)

Python自带一个轻量级的关系型数据库SQLite。这一数据库使用SQL语言。SQLite作为后端数据库,可以搭配Python建网站,或者制作有数据存储需求的工具。SQLite还在其它领域有广泛的应用,比如HTML5和移动端。Python
2023-06-02

Python3实现常用数据标准化方法

数据标准化是机器学习、数据挖掘中常用的一种方法。包括我自己在做深度学习方面的研究时,数据标准化是最基本的一个步骤。数据标准化主要是应对特征向量中数据很分散的情况,防止小数据被大数据(绝对值)吞并的情况。另外,数据标准化也有加速训练,防止梯度
2023-01-31

Python学习 :六个标准数据类型

一、Numbers(数字类型)数字类型主要分为两种—— 整数(Integer)与 浮点数(Float)整数分为整型和长整型(在Python3中已经不再区分为整型与长整型,统一称为整型)注意:数字类型是不可变的数据类型            
2023-01-30

python五大标准数据类型的介绍

这篇文章主要介绍“python五大标准数据类型的介绍”,在日常操作中,相信很多人在python五大标准数据类型的介绍问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”python五大标准数据类型的介绍”的疑惑有所
2023-06-02

使用pandas模块怎么实现数据标准化

本篇文章给大家分享的是有关使用pandas模块怎么实现数据标准化,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。如下所示:3σ 原则(u-3*σ ,u+3*σ )离差标准化(x-
2023-06-15

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录