我的编程空间,编程开发者的网络收藏夹
学习永远不晚

如何保证数据库和缓存双写一致性?

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

如何保证数据库和缓存双写一致性?

大家好,我是苏三,又跟大家见面了。

前言

数据库和缓存(比如:redis)双写数据一致性问题,是一个跟开发语言无关的公共问题。尤其在高并发的场景下,这个问题变得更加严重。

我很负责的告诉大家,该问题无论在面试,还是工作中遇到的概率非常大,所以非常有必要跟大家一起探讨一下。

今天这篇文章我会从浅入深,跟大家一起聊聊,数据库和缓存双写数据一致性问题常见的解决方案,这些方案中可能存在的坑,以及最优方案是什么。

1、 常见方案

通常情况下,我们使用缓存的主要目的是为了提升查询的性能。大多数情况下,我们是这样使用缓存

的:

  1. 用户请求过来之后,先查缓存有没有数据,如果有则直接返回。
  2. 如果缓存没数据,再继续查数据库。
  3. 如果数据库有数据,则将查询出来的数据,放入缓存中,然后返回该数据。
  4. 如果数据库也没数据,则直接返回空。

这是缓存非常常见的用法。一眼看上去,好像没有啥问题。

但你忽略了一个非常重要的细节:如果数据库中的某条数据,放入缓存之后,又立马被更新了,那么该如何更新缓存呢?

不更新缓存行不行?

答:当然不行,如果不更新缓存,在很长的一段时间内(决定于缓存的过期时间),用户请求从缓存中获取到的都可能是旧值,而非数据库的最新值。这不是有数据不一致的问题?

那么,我们该如何更新缓存呢?

目前有以下4种方案:

  1. 先写缓存,再写数据库。
  2. 先写数据库,再写缓存。
  3. 先删缓存,再写数据库。
  4. 先写数据库,再删缓存。

接下来,我们详细说说这4种方案。

2、先写缓存,再写数据库

对于更新缓存的方案,很多人第一个想到的可能是在写操作中直接更新缓存(写缓存),更直接明了。

那么,问题来了:在写操作中,到底是先写缓存,还是先写数据库呢?

我们在这里先聊聊先写缓存,再写数据库的情况,因为它的问题最严重。

某一个用户的每一次写操作,如果刚写完缓存,突然网络出现了异常,导致写数据库失败了。

其结果是缓存更新成了最新数据,但数据库没有,这样缓存中的数据不就变成脏数据了?如果此时该用户的查询请求,正好读取到该数据,就会出现问题,因为该数据在数据库中根本不存在,这个问题非常严重。

我们都知道,缓存的主要目的是把数据库的数据临时保存在内存,便于后续的查询,提升查询速度。

但如果某条数据,在数据库中都不存在,你缓存这种“假数据”又有啥意义呢?

因此,先写缓存,再写数据库的方案是不可取的,在实际工作中用得不多。

3、 先写数据库,再写缓存

既然上面的方案行不通,接下来,聊聊先写数据库,再写缓存的方案,该方案在低并发编程中有人在用(我猜的)。 用户的写操作,先写数据库,再写缓存,可以避免之前“假数据”的问题。但它却带来了新的问题。

什么问题呢?

(1)写缓存失败了

如果把写数据库和写缓存操作,放在同一个事务当中,当写缓存失败了,我们可以把写入数据库的数据进行回滚。

如果是并发量比较小,对接口性能要求不太高的系统,可以这么玩。

但如果在高并发的业务场景中,写数据库和写缓存,都属于远程操作。为了防止出现大事务,造成的死锁问题,通常建议写数据库和写缓存不要放在同一个事务中。

也就是说在该方案中,如果写数据库成功了,但写缓存失败了,数据库中已写入的数据不会回滚。

这就会出现:数据库是新数据,而缓存是旧数据,两边数据不一致的情况。

(2) 高并发下的问题

假设在高并发的场景中,针对同一个用户的同一条数据,有两个写数据请求:a和b,它们同时请求到业务系统。

其中请求a获取的是旧数据,而请求b获取的是新数据,如下图所示:

  1. 请求a先过来,刚写完了数据库。但由于网络原因,卡顿了一下,还没来得及写缓存。
  2. 这时候请求b过来了,先写了数据库。
  3. 接下来,请求b顺利写了缓存。
  4. 此时,请求a卡顿结束,也写了缓存。

很显然,在这个过程当中,请求b在缓存中的新数据,被请求a的旧数据覆盖了。

也就是说:在高并发场景中,如果多个线程同时执行先写数据库,再写缓存的操作,可能会出现数据库是新值,而缓存中是旧值,两边数据不一致的情况。

(3) 浪费系统资源

该方案还有一个比较大的问题就是:每个写操作,写完数据库,会马上写缓存,比较浪费系统资源。

为什么这么说呢?

你可以试想一下,如果写的缓存,并不是简单的数据内容,而是要经过非常复杂的计算得出的最终结果。这样每写一次缓存,都需要经过一次非常复杂的计算,不是非常浪费系统资源吗?

尤其是cpu和内存资源。

还有些业务场景比较特殊:写多读少。

如果在这类业务场景中,每个用的写操作,都需要写一次缓存,有点得不偿失。

由此可见,在高并发的场景中,先写数据库,再写缓存,这套方案问题挺多的,也不太建议使用。

如果你已经用了,赶紧看看踩坑了没?

4、 先删缓存,再写数据库

通过上面的内容我们得知,如果直接更新缓存的问题很多。

那么,为何我们不能换一种思路:不去直接更新缓存,而改为删除缓存呢?

删除缓存方案,同样有两种:

  1. 先删缓存,再写数据库。
  2. 先写数据库,再删缓存。

我们一起先看看:先删缓存,再写数据库的情况。

说白了,在用户的写操作中,先执行删除缓存操作,再去写数据库。这套方案,可以是可以,但也会有一样问题。

(1)高并发下的问题

假设在高并发的场景中,同一个用户的同一条数据,有一个读数据请求c,还有另一个写数据请求d(一个更新操作),同时请求到业务系统。如下图所示:

  1. 请求d先过来,把缓存删除了。但由于网络原因,卡顿了一下,还没来得及写数据库。
  2. 这时请求c过来了,先查缓存发现没数据,再查数据库,有数据,但是旧值。
  3. 请求c将数据库中的旧值,更新到缓存中。
  4. 此时,请求d卡顿结束,把新值写入数据库。

在这个过程当中,请求d的新值并没有被请求c写入缓存,同样会导致缓存和数据库的数据不一致的情况。

那么,这种场景的数据不一致问题,能否解决呢?

(2) 缓存双删

在上面的业务场景中,一个读数据请求,一个写数据请求。当写数据请求把缓存删了之后,读数据请求,可能把当时从数据库查询出来的旧值,写入缓存当中。

有人说还不好办,请求d在写完数据库之后,把缓存重新删一次不就行了?

这就是我们所说的缓存双删,即在写数据库之前删除一次,写完数据库后,再删除一次。

该方案有个非常关键的地方是:第二次删除缓存,并非立马就删,而是要在一定的时间间隔之后。

我们再重新回顾一下,高并发下一个读数据请求,一个写数据请求导致数据不一致的产生过程:

  1. 请求d先过来,把缓存删除了。但由于网络原因,卡顿了一下,还没来得及写数据库。
  2. 这时请求c过来了,先查缓存发现没数据,再查数据库,有数据,但是旧值。
  3. 请求c将数据库中的旧值,更新到缓存中。
  4. 此时,请求d卡顿结束,把新值写入数据库。
  5. 一段时间之后,比如:500ms,请求d将缓存删除。

这样来看确实可以解决缓存不一致问题。

那么,为什么一定要间隔一段时间之后,才能删除缓存呢?

请求d卡顿结束,把新值写入数据库后,请求c将数据库中的旧值,更新到缓存中。

此时,如果请求d删除太快,在请求c将数据库中的旧值更新到缓存之前,就已经把缓存删除了,这次删除就没任何意义。必须要在请求c更新缓存之后,再删除缓存,才能把旧值及时删除了。

所以需要在请求d中加一个时间间隔,确保请求c,或者类似于请求c的其他请求,如果在缓存中设置了旧值,最终都能够被请求d删除掉。

接下来,还有一个问题:如果第二次删除缓存时,删除失败了该怎么办?

这里先留点悬念,后面会详细说。

5、 先写数据库,再删缓存

从前面得知,先删缓存,再写数据库,在并发的情况下,也可能会出现缓存和数据库的数据不一致的情况。

那么,我们只能寄希望于最后的方案了。

接下来,我们重点看看先写数据库,再删缓存的方案。

在高并发的场景中,有一个读数据请求,有一个写数据请求,更新过程如下:

  1. 请求e先写数据库,由于网络原因卡顿了一下,没有来得及删除缓存。
  2. 请求f查询缓存,发现缓存中有数据,直接返回该数据。
  3. 请求e删除缓存。

在这个过程中,只有请求f读了一次旧数据,后来旧数据被请求e及时删除了,看起来问题不大。

但如果是读数据请求先过来呢?

  1. 请求f查询缓存,发现缓存中有数据,直接返回该数据。
  2. 请求e先写数据库。
  3. 请求e删除缓存。

这种情况看起来也没问题呀?

答:对的。

但就怕出现下面这种情况,即缓存自己失效了。如下图所示:

  1. 缓存过期时间到了,自动失效。
  2. 请求f查询缓存,发缓存中没有数据,查询数据库的旧值,但由于网络原因卡顿了,没有来得及更新缓存。
  3. 请求e先写数据库,接着删除了缓存。
  4. 请求f更新旧值到缓存中。

这时,缓存和数据库的数据同样出现不一致的情况了。

但这种情况还是比较少的,需要同时满足以下条件才可以:

  1. 缓存刚好自动失效。
  2. 请求f从数据库查出旧值,更新缓存的耗时,比请求e写数据库,并且删除缓存的还长。

我们都知道查询数据库的速度,一般比写数据库要快,更何况写完数据库,还要删除缓存。所以绝大多数情况下,写数据请求比读数据情况耗时更长。

由此可见,系统同时满足上述两个条件的概率非常小。

推荐大家使用先写数据库,再删缓存的方案,虽说不能100%避免数据不一致问题,但出现该问题的概率,相对于其他方案来说是最小的。

但在该方案中,如果删除缓存失败了该怎么办呢?

6、 删缓存失败怎么办?

先写数据库,再删缓存的方案,跟缓存双删的方案一样,有一个共同的风险点,即:如果缓存删除失败了,也会导致缓存和数据库的数据不一致。

那么,删除缓存失败怎么办呢?

答:需要加重试机制。

在接口中如果更新了数据库成功了,但更新缓存失败了,可以立刻重试3次。如果其中有任何一次成功,则直接返回成功。如果3次都失败了,则写入数据库,准备后续再处理。

当然,如果你在接口中直接同步重试,该接口并发量比较高的时候,可能有点影响接口性能。

这时,就需要改成异步重试了。

异步重试方式有很多种,比如:

  1. 每次都单独起一个线程,该线程专门做重试的工作。但如果在高并发的场景下,可能会创建太多的线程,导致系统OOM问题,不太建议使用。
  2. 将重试的任务交给线程池处理,但如果服务器重启,部分数据可能会丢失。
  3. 将重试数据写表,然后使用elastic-job等定时任务进行重试。
  4. 将重试的请求写入mq等消息中间件中,在mq的consumer中处理。
  5. 订阅mysql的binlog,在订阅者中,如果发现了更新数据请求,则删除相应的缓存。

7、 定时任务

使用定时任务重试的具体方案如下:

当用户操作写完数据库,但删除缓存失败了,需要将用户数据写入重试表中。如下图所示:

在定时任务中,异步读取重试表中的用户数据。重试表需要记录一个重试次数字段,初始值为0。然后重试5次,不断删除缓存,每重试一次该字段值+1。如果其中有任意一次成功了,则返回成功。如果重试了5次,还是失败,则我们需要在重试表中记录一个失败的状态,等待后续进一步处理。

在高并发场景中,定时任务推荐使用elastic-job。相对于xxl-job等定时任务,它可以分片处理,提升处理速度。同时每片的间隔可以设置成:1,2,3,5,7秒等。

如果大家对定时任务比较感兴趣的话,可以看看我的另一篇文章《学会这10种定时任务,我有点飘了》,里面列出了目前最主流的定时任务。

使用定时任务重试的话,有个缺点就是实时性没那么高,对于实时性要求特别高的业务场景,该方案不太适用。但是对于一般场景,还是可以用一用的。

但它有一个很大的优点,即数据是落库的,不会丢数据。

8、mq

在高并发的业务场景中,mq(消息队列)是必不可少的技术之一。它不仅可以异步解耦,还能削峰填谷。对保证系统的稳定性是非常有意义的。

对mq有兴趣的朋友可以看看我的另一篇文章《mq的那些破事儿》。

mq的生产者,生产了消息之后,通过指定的topic发送到mq服务器。然后mq的消费者,订阅该topic的消息,读取消息数据之后,做业务逻辑处理。

使用mq重试的具体方案如下:

  1. 当用户操作写完数据库,但删除缓存失败了,产生一条mq消息,发送给mq服务器。
  2. mq消费者读取mq消息,重试5次删除缓存。如果其中有任意一次成功了,则返回成功。如果重试了5次,还是失败,则写入死信队列中。
  3. 推荐mq使用rocketmq,重试机制和死信队列默认是支持的。使用起来非常方便,而且还支持顺序消息,延迟消息和事务消息等多种业务场景。

当然在该方案中,删除缓存可以完全走异步。即用户的写操作,在写完数据库之后,不用立刻删除一次缓存。而直接发送mq消息,到mq服务器,然后有mq消费者全权负责删除缓存的任务。

因为mq的实时性还是比较高的,因此改良后的方案也是一种不错的选择。

9、 binlog

前面我们聊过的,无论是定时任务,还是mq(消息队列),做重试机制,对业务都有一定的侵入性。

在使用定时任务的方案中,需要在业务代码中增加额外逻辑,如果删除缓存失败,需要将数据写入重试表。

而使用mq的方案中,如果删除缓存失败了,需要在业务代码中发送mq消息到mq服务器。

其实,还有一种更优雅的实现,即监听binlog,比如使用:canal等中间件。

具体方案如下:

  1. 在业务接口中写数据库之后,就不管了,直接返回成功。
  2. mysql服务器会自动把变更的数据写入binlog中。
  3. binlog订阅者获取变更的数据,然后删除缓存。

这套方案中业务接口确实简化了一些流程,只用关心数据库操作即可,而在binlog订阅者中做缓存删除工作。

但如果只是按照图中的方案进行删除缓存,只删除了一次,也可能会失败。

如何解决这个问题呢?

答:这就需要加上前面聊过的重试机制了。如果删除缓存失败,写入重试表,使用定时任务重试。或者写入mq,让mq自动重试。

在这里推荐使用mq自动重试机制。

在binlog订阅者中如果删除缓存失败,则发送一条mq消息到mq服务器,在mq消费者中自动重试5次。如果有任意一次成功,则直接返回成功。如果重试5次后还是失败,则该消息自动被放入死信队列,后面可能需要人工介入。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

如何保证数据库和缓存双写一致性?

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

如何保证数据库和缓存双写一致性?

今天这篇文章我会从浅入深,跟大家一起聊聊,数据库和缓存双写数据一致性问题常见的解决方案,这些方案中可能存在的坑,以及最优方案是什么。

如何保证缓存与数据库的双写一致性

本篇内容主要讲解“如何保证缓存与数据库的双写一致性”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“如何保证缓存与数据库的双写一致性”吧!只要用缓存,就可能会涉及到缓存与数据库双存储双写,你只要是双
2023-06-02

如何保证缓存和数据库一致性

[TOC]多年前在一次面试中,被问到如果数据更新,先修改数据库还是先修改缓存。因为没有想过,所以比较懵逼,时候赶紧搜索,发现这里面很有学问。基本上所有的文章最终都指向了两个地方,就是Oracle和Hazelcast对缓存更新策略的介绍。Cache-Aside常
如何保证缓存和数据库一致性
2015-01-22

如何保证Mongodb和数据库双写数据一致性?

很多小伙伴看到双写数据一致性问题,首先会想到的是Redis和数据库的数据双写一致性问题。有些小伙伴认为,Redis和数据库​的数据双写一致性问题,跟Mongodb和数据库的数据双写一致性问题,是同一个问题。

redis如何保证缓存和数据库一致性

redis 通过五种机制维护缓存一致性:1. 写通过缓存,2. 定期同步,3. 事务支持,4. 发布-订阅,5. 校验和修复。选择机制取决于数据变更频率、数据一致性要求、应用性能和维护成本等因素。Redis如何实现缓存一致性Redis作为
redis如何保证缓存和数据库一致性
2024-04-20

如何保证缓存和数据库的一致性?

保证缓存和数据库的一致性是一个复杂但重要的问题。通过选择合适的策略,并结合业务场景和需求进行优化,我们可以有效地减少数据不一致的情况,提升系统的稳定性和可靠性。

趣说 | 数据库和缓存如何保证一致性?

「先更新数据库,再删缓存」的策略的第一步是更新数据库,那么更新数据库成功,就会产生一条变更日志,记录在 binlog 里。

缓存与数据库双写一致性

这篇文章就来详细聊聊双写一致性。首先我们知道,现在将高速缓存应用于业务当中已经十分常见了,甚至可能跟数据库的频率不相上下。你的用户量如果上去了,直接将一个裸的 MySQL 去扛住所有压力明显是不合理的。

如何保证redis和数据库的双写一致

为了保持 redis 和数据库双写一致性,可以采取以下措施:1. 使用事务保证操作原子性;2. 使用消息队列解耦写入操作;3. 使用乐观锁保证并发写入原子性;4. 使用主从复制提高可用性和容错性;5. 使用最终一致性接受短暂不一致性。如何确
如何保证redis和数据库的双写一致
2024-04-19

redis怎么保证和数据库双写一致性

为了在redis与数据库双写中保证数据一致性,可以采用以下策略:1. 顺序更新:先写入redis,成功后写入数据库,失败则回滚redis;2. 事务更新:将redis写入和数据库写入作为一个原子操作执行;3. 管道更新:将多个写入操作组合成
redis怎么保证和数据库双写一致性
2024-04-08

保证缓存和数据库的数据一致性详解

在实际开发过程中,缓存的使用频率是非常高的,只要使用缓存和数据库存储,就难免会出现双写时数据一致性的问题,本文主要介绍了如何保证缓存和数据库的数据一致性,需要的小伙伴可以参考阅读
2023-05-15

怎么保证缓存和数据库的数据一致性

本篇内容主要讲解“怎么保证缓存和数据库的数据一致性”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“怎么保证缓存和数据库的数据一致性”吧!1、错误的解决方案1.1、 先更新数据库,再删除缓存若数据库
2023-04-21

redis和数据库如何保证一致性

redis 与数据库之间的数据一致性可以通过以下机制实现:1. 主从复制机制,通过异步复制实现一致性;2. 双写机制,同时向 redis 和数据库写入数据保持同步;3. 乐观锁,通过版本号或时间戳控制并发访问保证一致性;4. 事务补偿机制,
redis和数据库如何保证一致性
2024-04-20

【分布式】数据库和缓存双写一致性方案解析

引言为什么写这篇文章?首先,缓存由于其高并发和高性能的特性,已经在项目中被广泛使用。在读取缓存方面,大家没啥疑问,都是按照下图的流程来进行业务操作。但是在更新缓存方面,对于更新完数据库,是更新缓存呢,还是删除缓存。又或者是先删除缓存,再更新
2023-06-02

redis缓存与数据库双写不一致如何解决

为解决 redis 缓存和数据库双写不一致问题,可采用以下方法:使用队列:将数据更新请求放入队列,确保先写入数据库再更新缓存。使用乐观锁:更新时检查数据是否被修改,若已被修改则取消更新并通知重试。使用事件机制:当数据库更新时触发事件通知应用
redis缓存与数据库双写不一致如何解决
2024-04-20

虾皮一面:如何保证数据双写一致?

数据库和缓存双写一致性问题是一道经典的面试题,最初解决方案是先更新数据库、再删除缓存,然而如果发生掉电情况,只执行了前一步操作,那么缓存和数据库就出现了不一致性的问题。

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录