我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python pyecharts 数据可视化模块的配置方法

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python pyecharts 数据可视化模块的配置方法

1. pyecharts 模块介绍

Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。

pyecharts 官网:https://pyecharts.org/#/zh-cn/

pyecharts 画廊地址:https://gallery.pyecharts.org/#/README

2. pyecharts 模块安装

pip install pyecharts

3. pyecharts 配置选项

pyecharts 模块中有很多配置选项,常用到两个类别的选项:全局配置选项和系列配置选项。

3.1 全局配置选项

全局配置选项可以通过 set_global_opts 方法来进行配置,通常对图表的一些通用的基础的元素进行配置,例如、图例、工具箱、鼠标移动效果等等,它们与图表的类型无关。

示例代码:通过折线图对象对折线图进行全局配置

from pyecharts.charts import Line
from pyecharts.options import TitleOpts, LegendOpts, ToolboxOpts, VisualMapOpts

# 获取折线图对象
line = Line()

# 对折线图进行全局配置
line.set_global_opts(
    # 设置、的位置...
    title_opts=TitleOpts("国家GDP展示", pos_left="center", pos_bottom="1%"),
    # 设置图例是展示的...
    legend_opts=LegendOpts(is_show=True),
    # 设置工具箱是展示的
    toolbox_opts=ToolboxOpts(is_show=True),
    # 设置视觉映射是展示的
    visualmap_opts=VisualMapOpts(is_show=True)
)

3.2 系列配置选项

系列配置选项是针对某个具体的参数进行配置,可以去 pyecharts 官网进行了解。

4. 基础折线图的构建

4.1 基本使用流程

1.导包,导入 Line 功能构建折线图对象

from pyecharts.charts import Line
from pyecharts.options import TitleOpts, LegendOpts, ToolboxOpts, VisualMapOpts

2.获取折线图对象

line = Line()

3.添加 x、y 轴数据(添加系列配置)

line.add_xaxis(["中国", "美国", "英国"])
line.add_yaxis("GDP", [30, 20, 10])

4.添加全局配置

line.set_global_opts(
    # 设置、的位置...
    title_opts=TitleOpts("国家GDP展示", pos_left="center", pos_bottom="1%"),
    # 设置图例是展示的...
    legend_opts=LegendOpts(is_show=True),
    # 设置工具箱是展示的
    toolbox_opts=ToolboxOpts(is_show=True),
    # 设置视觉映射是展示的
    visualmap_opts=VisualMapOpts(is_show=True)
)

5.生成图表(通过 render 方法将代码生成图像)

line.render()

4.2 实现2020年美印日确诊人数对比折线图

import json
from pyecharts.charts import Line
# 获取不同国家疫情时间
from pyecharts.options import TitleOpts, LabelOpts
def getdata(file):
    # 处理数据
    try:
        f = open(file, 'r', encoding='utf8')
    except FileNotFoundError as e:
        print(f"文件不存在,具体错误为:{e}")
    else:
        data = f.read()

        # JSON 转 Python 字典
        dict = json.loads(data)

        # 获取 trend
        trend_data = dict['data'][0]['trend']

        # 获取日期数据,用于 x 轴(只拿2020年的数据)
        x_data = trend_data['updateDate'][:314]

        # 获取确认数据,用于 y 轴
        y_data = trend_data['list'][0]['data'][:314]

        # 返回结果
        return x_data, y_data
    finally:
        f.close()


# 获取美国数据
us_x_data, us_y_data = getdata("E:\\折线图数据\\美国.txt")

# 获取印度数据
in_x_data, in_y_data = getdata("E:\\折线图数据\\印度.txt")

# 获取日本数据
jp_x_data, jp_y_data = getdata("E:\\折线图数据\\日本.txt")

# 生成图表
line = Line()

# 添加 x 轴数据(日期,公用数据,不同国家都一样)
line.add_xaxis(us_x_data)

# 添加 y 轴数据(设置 y 轴的系列配置,将标签不显示)
line.add_yaxis("美国确诊人数", us_y_data, label_opts=LabelOpts(is_show=False))  # 添加美国数据
line.add_yaxis("印度确诊人数", in_y_data, label_opts=LabelOpts(is_show=False))  # 添加印度数据
line.add_yaxis("日本确诊人数", jp_y_data, label_opts=LabelOpts(is_show=False))  # 添加日本数据

# 配置全局选项
line.set_global_opts(
    # 设置
    title_opts=TitleOpts("2020年美日印三国确诊人数对比折线图", pos_left="center", pos_bottom="1%"),

)

# 生成图表
line.render()

5. 基础地图构建

5.1 基本使用流程

1.导包,导入 Map 功能获取地图对象

from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts

2.获取地图对象

map = Map()

3.准备好数据

data = [
    ("北京", 99),
    ("上海", 199),
    ("广州", 299),
    ("湖南", 199),
    ("安徽", 99),
    ("湖北", 399),
]

4.添加数据到地图对象中

# 地图名称、传入的数据、地图类型(默认是中国地图)
map,add("地图", data, "china")

5.添加全局配置

map.set_global_opts(
    # 设置视觉映射配置
    visualmap_opts=VisualMapOpts(
        # 打开视觉映射(可能不精准,因此可以开启手动校准)
        is_show=True,
        # 开启手动校准范围
        is_piecewise=True,
        # 设置要校准参数的具体范围
        pieces=[
            {"min": 1, "max": 9, "label": "1~9人", "color": "#CCFFFF"},
            {"min": 10, "max": 99, "label": "10~99人", "color": "#FFFF99"},
            {"min": 100, "max": 199, "label": "100~199人", "color": "#FF9966"},
            {"min": 200, "max": 299, "label": "200~299人", "color": "#FF6666"},
            {"min": 300, "label": "300人以上", "color": "#CC3333"},
        ]
    )
)

6.生成地图

map.render()

5.2 实现国内疫情地图

import json
from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts, TitleOpts, LegendOpts

# 读取数据
f = open("E:\\地图数据\\疫情.txt", 'r', encoding='utf8')
str_json = f.read()

# 关闭文件
f.close()

# JSON 转 python 字典
data_dict = json.loads(str_json)

# 取到各省数据
province_data_list = data_dict['areaTree'][0]['children']

# 组装每个省份和确诊人数为元组,并封装到列表内
data_list = []
for province_data in province_data_list:
    province_name = province_data['name']
    province_total_confirm = province_data['total']['confirm']
    data_list.append((province_name, province_total_confirm))

# 创建地图对象
map = Map()

# 添加数据
map.add("各省确诊总人数", data_list, "china")

# 设置全局配置,定制分段的视觉映射
map.set_global_opts(
    title_opts=TitleOpts('全国疫情地图', pos_left='center', pos_bottom='1%'),
    legend_opts=LegendOpts(is_show=True),
    visualmap_opts=VisualMapOpts(
        is_show=True,
        is_piecewise=True,
        pieces=[
            {"min": 1, "max": 9, "label": "1~9人", "color": "#CCFFFF"},
            {"min": 10, "max": 99, "label": "10~99人", "color": "#FFFF99"},
            {"min": 100, "max": 499, "label": "100~499人", "color": "#FF9966"},
            {"min": 500, "max": 999, "label": "500~999人", "color": "#FF6666"},
            {"min": 1000, "max": 9999, "label": "1000~9999人", "color": "#CC3333"},
            {"min": 10000, "label": "10000人以上", "color": "#990033"}
        ]
    )
)

# 绘图
map.render()

5.3 实现省级疫情地图

import json
from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts, TitleOpts, LegendOpts

# 读取数据
f = open("E:\\地图数据\\疫情.txt", 'r', encoding='utf8')
str_json = f.read()

# 关闭文件
f.close()

# JSON 转 python 字典
data_dict = json.loads(str_json)

# 取到河南省数据
city_data_list = data_dict['areaTree'][0]['children'][3]['children']

# 组装每个市和确诊人数为元组,并封装到列表内
data_list = []
for city_data in city_data_list:
    city_name = city_data['name'] + "市"
    city_total_confirm = city_data['total']['confirm']
    data_list.append((city_name, city_total_confirm))

# 创建地图对象
map = Map()

# 添加数据
map.add("各市确诊总人数", data_list, "河南")

# 设置全局配置,定制分段的视觉映射
map.set_global_opts(
    title_opts=TitleOpts('河南省疫情地图', pos_left='center', pos_bottom='1%'),
    legend_opts=LegendOpts(is_show=True),
    visualmap_opts=VisualMapOpts(
        is_show=True,
        is_piecewise=True,
        pieces=[
            {"min": 1, "max": 9, "label": "1~9人", "color": "#CCFFFF"},
            {"min": 10, "max": 99, "label": "10~99人", "color": "#FFFF99"},
            {"min": 100, "max": 499, "label": "100~499人", "color": "#FF9966"},
            {"min": 500, "max": 999, "label": "500~999人", "color": "#FF6666"},
            {"min": 1000, "max": 9999, "label": "1000~9999人", "color": "#CC3333"},
            {"min": 10000, "label": "10000人以上", "color": "#990033"}
        ]
    )
)

# 绘图
map.render()

6. 基础柱状图构建

6.1 基本使用流程

1.导包,导入 Bar 功能获取地图对象

from pyecharts.charts import Bar
from pyecharts.options import *

2.获取地图对象

bar = Bar()

3.添加 x 和 y 轴数据

# 添加 x 轴数据
bar.add_xaxis(["中国", "英国", "美国"])
# 添加 y 轴数据
bar.add_yaxis("GDP", [30, 20, 10])

4.添加全局配置

bar.set_global_opts(
    title_opts=TitleOpts("基础柱状图", pos_left='center', pos_bottom='1%')
)

5.生成地图

bar.render()

6.反转 xy 轴

bar.reversal_axis()

7.将数值标签添设置到右侧

bar.add_yaxis("GDP", [30, 20, 10], label_opts=LabelOpts(position='right'))

6.2 基础时间线柱状图

柱状图描述的是分类数据,但很难动态的描述一个趋势性的数据,为此 pyecharts 中提供了一种解决方案时间线。

如果说一个 Bar、Line 对象是一张图表的话,时间线就是创建一个一维的 x 轴,轴上的每一个点就是一个图表对象。

创建时间线的基础流程:

1.导包,导入时间线 Timeline

from pyecharts.charts import Bar, Timeline
from pyecharts.options import *

2.准备好图表对象并添加好数据

bar1 = Bar()
bar1.add_xaxis(["中国", "英国", "美国"])
bar1.add_yaxis("GDP", [30, 20, 10], label_opts=LabelOpts(position='right'))
bar1.reversal_axis()

bar2 = Bar()
bar2.add_xaxis(["中国", "英国", "美国"])
bar2.add_yaxis("GDP", [50, 20, 30], label_opts=LabelOpts(position='right'))
bar2.reversal_axis()

bar3 = Bar()
bar3.add_xaxis(["中国", "英国", "美国"])
bar3.add_yaxis("GDP", [60, 30, 40], label_opts=LabelOpts(position='right'))
bar3.reversal_axis()

3.创建时间线对象 Timeline

timeline = Timeline()

4.将图表添加到 Timeline 对象中

# 添加图表到时间线中(图表对象,点名称)
timeline.add(bar1, "2020年GDP")
timeline.add(bar2, "2021年GDP")
timeline.add(bar3, "2022年GDP")

5.通过时间线绘图

timeline.render()

6.设置自动播放

timeline.add_schema(
    play_interval=1000,      # 自动播放的时间间隔,单位毫秒
    is_timeline_show=True,  # 是否显示自动播放的时候,显示时间线(默认 True)
    is_auto_play=True,       # 是否在自动播放(默认 False)
    is_loop_play=True        # 是否循环自动播放(默认 True)
)

7.设置时间线主题

# 导入 ThemeType
from pyecharts.globals import ThemeType

# 创建时间线对象时,设置主题参数
timeline = Timeline({"theme": ThemeType.DARK})

主题参数如下:

6.3 实现动态 GDP 柱状图

import json
from pyecharts.charts import Bar, Timeline
from pyecharts.options import *
from pyecharts.globals import ThemeType

# 读取数据
f = open("E:\\动态柱状图数据\\1960-2019全球GDP数据.csv", 'r', encoding='GB2312')
data_lines = f.readlines()

# 关闭文件
f.close()

# 删除第一条数据
data_lines.pop(0)

# 将数据转化为字典才能出,格式为 {年份1: [[国家1, GDP], [国家2, GDP]], 年份2: [国家, GDP], ...}
data_dict = dict()

for line in data_lines:
    year = int(line.split(',')[0])  # 年份
    country = line.split(',')[1]  # 国家
    gdp = float(line.split(',')[2])  # gdp 数据,通过 float 强制转换可以把带有科学计数法的数字转换为普通数字

    try:  # 如果 key 不存在,则会抛出异常 KeyError
        data_dict[year].append([country, gdp])
    except KeyError:
        data_dict[year] = [[country, gdp]]

# 排序年份(字典对象的 key 可能是无序的)
sorted_year_list = sorted(data_dict.keys())

# 创建时间线对象
timeline = Timeline({"theme": ThemeType.LIGHT})

# 组装数据到 Bar 对象中,并添加到 timeline 中
for year in sorted_year_list:
    data_dict[year].sort(key=lambda element: element[1], reverse=True)
    # 该年份GDP前八的国家
    year_data = data_dict[year][:8]
    x_data = []
    y_data = []
    for country_gdp in year_data:
        x_data.append(country_gdp[0])
        y_data.append(country_gdp[1] / 100000000)
    # 创建柱状图
    bar = Bar()
    x_data.reverse()
    y_data.reverse()
    # 添加 x y 轴数据
    bar.add_xaxis(x_data)
    bar.add_yaxis("GDP(亿)", y_data, label_opts=LabelOpts(position='right'))
    # 反转 x y 轴
    bar.reversal_axis()
    # 设置每一年的图表的
    bar.set_global_opts(
        title_opts=TitleOpts(f"{year}年GDP全球前8国家", pos_left='5%')
    )
    # 将 bar 对象添加到 timeline 中
    timeline.add(bar, year)

# 设置自动播放参数
timeline.add_schema(
    play_interval=1000,      # 自动播放的时间间隔,单位毫秒
    is_timeline_show=True,   # 是否显示自动播放的时候,显示时间线(默认 True)
    is_auto_play=True,       # 是否在自动播放(默认 False)
    is_loop_play=True        # 是否循环自动播放(默认 True)
)

# 通过时间线绘图
timeline.render("1960~2019全球GDP前8国家.html")

到此这篇关于Python pyecharts 数据可视化模块的文章就介绍到这了,更多相关Python pyecharts 数据可视化内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python pyecharts 数据可视化模块的配置方法

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python用pyecharts实现地图数据可视化的方法

这篇文章给大家分享的是有关python用pyecharts实现地图数据可视化的方法的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。有的时候,我们需要对不同国家或地区的某项指标进行比较,可简单通过直方图加以比较。但直
2023-06-14

Python数据可视化的方法

这篇“Python数据可视化的方法”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Python数据可视化的方法”文章吧。一、数
2023-06-30

python数据可视化matplotlib.pyplot的用法

这篇文章主要介绍“python数据可视化matplotlib.pyplot的用法”,在日常操作中,相信很多人在python数据可视化matplotlib.pyplot的用法问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对
2023-06-20

Python数据结构之递归可视化的方法

今天小编给大家分享一下Python数据结构之递归可视化的方法的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。1.学习目标递归函
2023-06-30

Python数据可视化之基于pyecharts实现的地理图表的绘制

目录一、例子:百度迁徙二、基础语法介绍三、中国地图绘制四、中国地图(特效散点图)五、中国人口地理迁徙图绘制六、热力图:广东地图热力图绘制1七、热力图:广东地图热力图绘制2一、例子:百度迁徙 百度地图春节人口迁徙大数据(简称百度迁徙),是百度
2022-06-02

揭秘 Python 数据可视化的魔法

Python 数据可视化让复杂数据变得直观易懂,本文将揭示 Python 数据可视化的强大功能,并通过演示代码深入探索各种绘图库和技术。
揭秘 Python 数据可视化的魔法
2024-03-07

数据可视化中的Python问题及解决方法

数据可视化中的Python问题及解决方法数据可视化是数据科学领域中一个非常重要的任务,通过可视化我们能够更直观地理解和分析数据,为决策提供有力的支持。Python作为一种流行的编程语言,在数据可视化方面有着广泛的应用。然而,在实践中,我们经
2023-10-22

四种快速易用的Python数据可视化方法

热力图、二维密度图、蜘蛛网图和树状图,这些可视化方法你都用过吗?

python数据可视化JupyterLab实用方法是什么

这篇文章主要介绍“python数据可视化JupyterLab实用方法是什么”,在日常操作中,相信很多人在python数据可视化JupyterLab实用方法是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”p
2023-06-25

Python中seaborn库之countplot数据可视化的使用方法

这篇文章给大家分享的是有关Python中seaborn库之countplot数据可视化的使用方法的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。在Python数据可视化中,seaborn较好的提供了图形的一些可视化
2023-06-15

快速易用的Python数据可视化方法有哪些

这篇文章主要介绍“快速易用的Python数据可视化方法有哪些”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“快速易用的Python数据可视化方法有哪些”文章能帮助大家解决问题。数据可视化是数据科学或机
2023-07-05

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录