我的编程空间,编程开发者的网络收藏夹
学习永远不晚

pytorch中如何使用model.eval()和BN层

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

pytorch中如何使用model.eval()和BN层

这篇文章给大家分享的是有关pytorch中如何使用model.eval()和BN层的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

代码如下

class ConvNet(nn.module):    def __init__(self, num_class=10):        super(ConvNet, self).__init__()        self.layer1 = nn.Sequential(nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),                                    nn.BatchNorm2d(16),                                    nn.ReLU(),                                    nn.MaxPool2d(kernel_size=2, stride=2))        self.layer2 = nn.Sequential(nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),                                    nn.BatchNorm2d(32),                                    nn.ReLU(),                                    nn.MaxPool2d(kernel_size=2, stride=2))        self.fc = nn.Linear(7*7*32, num_classes)             def forward(self, x):        out = self.layer1(x)        out = self.layer2(out)        print(out.size())        out = out.reshape(out.size(0), -1)        out = self.fc(out)        return out
# Test the modelmodel.eval()  # eval mode (batchnorm uses moving mean/variance instead of mini-batch mean/variance)with torch.no_grad():    correct = 0    total = 0    for images, labels in test_loader:        images = images.to(device)        labels = labels.to(device)        outputs = model(images)        _, predicted = torch.max(outputs.data, 1)        total += labels.size(0)        correct += (predicted == labels).sum().item()

如果网络模型model中含有BN层,则在预测时应当将模式切换为评估模式,即model.eval()。

评估模拟下BN层的均值和方差应该是整个训练集的均值和方差,即 moving mean/variance。

训练模式下BN层的均值和方差为mini-batch的均值和方差,因此应当特别注意。

补充:Pytorch 模型训练模式和eval模型下差别巨大(Pytorch train and eval)附解决方案

当pytorch模型写明是eval()时有时表现的结果相对于train(True)差别非常巨大,这种差别经过逐层查看,主要来源于使用了BN,在eval下,使用的BN是一个固定的running rate,而在train下这个running rate会根据输入发生改变。

解决方案是冻住bn

def freeze_bn(m):    if isinstance(m, nn.BatchNorm2d):        m.eval()model.apply(freeze_bn)

这样可以获得稳定输出的结果。

pytorch的优点

1.PyTorch是相当简洁且高效快速的框架;2.设计追求最少的封装;3.设计符合人类思维,它让用户尽可能地专注于实现自己的想法;4.与google的Tensorflow类似,FAIR的支持足以确保PyTorch获得持续的开发更新;5.PyTorch作者亲自维护的论坛 供用户交流和求教问题6.入门简单

感谢各位的阅读!关于“pytorch中如何使用model.eval()和BN层”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

pytorch中如何使用model.eval()和BN层

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

pytorch中如何使用model.eval()和BN层

这篇文章给大家分享的是有关pytorch中如何使用model.eval()和BN层的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。代码如下class ConvNet(nn.module): def __ini
2023-06-15

Pytorch中的model.train()和model.eval()怎么使用

本文小编为大家详细介绍“Pytorch中的model.train()和model.eval()怎么使用”,内容详细,步骤清晰,细节处理妥当,希望这篇“Pytorch中的model.train()和model.eval()怎么使用”文章能帮助
2023-07-06

PyTorch中torch.manual_seed()如何使用

这篇文章主要介绍“PyTorch中torch.manual_seed()如何使用”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“PyTorch中torch.manual_seed()如何使用”文章能帮
2023-07-02

Pytorch中expand()如何使用

这篇文章主要介绍“Pytorch中expand()如何使用”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Pytorch中expand()如何使用”文章能帮助大家解决问题。Pytorch expand
2023-07-02

Pytorch中transforms.Resize()如何使用

这篇文章主要介绍“Pytorch中transforms.Resize()如何使用”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Pytorch中transforms.Resize()如何使用”文章能帮
2023-07-02

如何在pytorch中使用squeeze和cat函数

今天就跟大家聊聊有关如何在pytorch中使用squeeze和cat函数,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。1 squeeze(): 去除size为1的维度,包括行和列。至
2023-06-15

optimizer如何在Pytorch中使用

本文章向大家介绍optimizer如何在Pytorch中使用,主要包括optimizer如何在Pytorch中使用的使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。如何使用Optimizer要想
2023-06-06

在Pytorch中如何使用contiguous

这篇文章主要介绍“在Pytorch中如何使用contiguous”,在日常操作中,相信很多人在在Pytorch中如何使用contiguous问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”在Pytorch中如何
2023-06-06

pytorch中nn.Flatten()函数如何使用

这篇文章主要介绍了pytorch中nn.Flatten()函数如何使用的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇pytorch中nn.Flatten()函数如何使用文章都会有所收获,下面我们一起来看看吧。t
2023-07-04

Keras中如何使用Embedding层

在Keras中使用Embedding层,可以通过以下步骤实现:导入必要的库:from keras.models import Sequentialfrom keras.layers import Embedding创建一个Sequenti
Keras中如何使用Embedding层
2024-03-12

如何在Pytorch中使用Dataset和DataLoader读取数据

本篇文章给大家分享的是有关如何在Pytorch中使用Dataset和DataLoader读取数据,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。一、前言确保安装scikit-im
2023-06-15

PyTorch中的squeeze()和unsqueeze()如何应用

本篇内容主要讲解“PyTorch中的squeeze()和unsqueeze()如何应用”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“PyTorch中的squeeze()和unsqueeze()如
2023-06-29

如何在pytorch中使用forward 方法

这篇文章将为大家详细讲解有关如何在pytorch中使用forward 方法,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。forward 的使用class Module(nn.Module):
2023-06-06

如何在pytorch中使用numel函数

本篇文章给大家分享的是有关如何在pytorch中使用numel函数,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。获取tensor中一共包含多少个元素import torchx
2023-06-15

Python中如何使用PyTorch实现WGAN

这篇文章给大家分享的是有关Python中如何使用PyTorch实现WGAN的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。1.GAN简述在GAN中,有两个模型,一个是生成模型,用于生成样本,一个是判别模型,用于判断
2023-06-25

PyTorch中如何使用预训练的模型

在PyTorch中使用预训练的模型可以通过torchvision库中的models模块实现。该模块包含了一些常用的预训练模型,如ResNet、VGG、AlexNet等。以下是一个使用预训练的ResNet模型的示例:import torch
PyTorch中如何使用预训练的模型
2024-03-05

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录