我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python人工智能自定义求导tf_diffs详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python人工智能自定义求导tf_diffs详解

自定义求导:(近似求导数的方法)

让x向左移动eps得到一个点,向右移动eps得到一个点,这两个点形成一条直线,这个点的斜率就是x这个位置的近似导数。

eps足够小,导数就足够真。

def f(x):
    return 3. * x ** 2 + 2. * x - 1
def approximate_derivative(f, x, eps=1e-3):
    return (f(x + eps) - f(x - eps)) / (2. * eps)
print(approximate_derivative(f, 1.))

运行结果:

7.999999999999119

多元函数的求导

def g(x1, x2):
    return (x1 + 5) * (x2 ** 2)
def approximate_gradient(g, x1, x2, eps=1e-3):
    dg_x1 = approximate_derivative(lambda x: g(x, x2), x1, eps)
    dg_x2 = approximate_derivative(lambda x: g(x1, x), x2, eps)
    return dg_x1, dg_x2
print(approximate_gradient(g, 2., 3.))

运行结果:

(8.999999999993236, 41.999999999994486)

在tensorflow中的求导

x1 = tf.Variable(2.0)
x2 = tf.Variable(3.0)
with tf.GradientTape() as tape:
    z = g(x1, x2)
dz_x1 = tape.gradient(z, x1)
print(dz_x1)

运行结果:

tf.Tensor(9.0, shape=(), dtype=float32)

但是tf.GradientTape()只能使用一次,使用一次之后就会被消解

try:
    dz_x2 = tape.gradient(z, x2)
except RuntimeError as ex:
    print(ex)

运行结果:

A non-persistent GradientTape can only be used to compute one set of gradients (or jacobians)

解决办法:设置persistent = True,记住最后要把tape删除掉

x1 = tf.Variable(2.0)
x2 = tf.Variable(3.0)
with tf.GradientTape(persistent = True) as tape:
    z = g(x1, x2)
dz_x1 = tape.gradient(z, x1)
dz_x2 = tape.gradient(z, x2)
print(dz_x1, dz_x2)
del tape

运行结果:

tf.Tensor(9.0, shape=(), dtype=float32) tf.Tensor(42.0, shape=(), dtype=float32)

使用tf.GradientTape()

同时求x1,x2的偏导

x1 = tf.Variable(2.0)
x2 = tf.Variable(3.0)
with tf.GradientTape() as tape:
    z = g(x1, x2)
dz_x1x2 = tape.gradient(z, [x1, x2])
print(dz_x1x2)

运行结果:

[<tf.Tensor: shape=(), dtype=float32, numpy=9.0>, <tf.Tensor: shape=(), dtype=float32, numpy=42.0>]

对常量求偏导

x1 = tf.constant(2.0)
x2 = tf.constant(3.0)
with tf.GradientTape() as tape:
    z = g(x1, x2)
dz_x1x2 = tape.gradient(z, [x1, x2])
print(dz_x1x2)

运行结果:

[None, None]

可以使用watch函数关注常量上的导数

x1 = tf.constant(2.0)
x2 = tf.constant(3.0)
with tf.GradientTape() as tape:
    tape.watch(x1)
    tape.watch(x2)
    z = g(x1, x2)
dz_x1x2 = tape.gradient(z, [x1, x2])
print(dz_x1x2)

运行结果:

[<tf.Tensor: shape=(), dtype=float32, numpy=9.0>, <tf.Tensor: shape=(), dtype=float32, numpy=42.0>]

也可以使用两个目标函数对一个变量求导:

x = tf.Variable(5.0)
with tf.GradientTape() as tape:
    z1 = 3 * x
    z2 = x ** 2
tape.gradient([z1, z2], x)

运行结果:

<tf.Tensor: shape=(), dtype=float32, numpy=13.0>

结果13是z1对x的导数加上z2对于x的导数

求二阶导数的方法

x1 = tf.Variable(2.0)
x2 = tf.Variable(3.0)
with tf.GradientTape(persistent=True) as outer_tape:
    with tf.GradientTape(persistent=True) as inner_tape:
        z = g(x1, x2)
    inner_grads = inner_tape.gradient(z, [x1, x2])
outer_grads = [outer_tape.gradient(inner_grad, [x1, x2])
               for inner_grad in inner_grads]
print(outer_grads)
del inner_tape
del outer_tape

运行结果:

[[None, <tf.Tensor: shape=(), dtype=float32, numpy=6.0>], [<tf.Tensor: shape=(), dtype=float32, numpy=6.0>, <tf.Tensor: shape=(), dtype=float32, numpy=14.0>]]

结果是一个2x2的矩阵,左上角是z对x1的二阶导数,右上角是z先对x1求导,在对x2求导

左下角是z先对x2求导,在对x1求导,右下角是z对x2的二阶导数

学会自定义求导就可以模拟梯度下降法了,梯度下降就是求导,再在导数的位置前进一点点 模拟梯度下降法:

learning_rate = 0.1
x = tf.Variable(0.0)
for _ in range(100):
    with tf.GradientTape() as tape:
        z = f(x)
    dz_dx = tape.gradient(z, x)
    x.assign_sub(learning_rate * dz_dx)
print(x)

运行结果:

<tf.Variable 'Variable:0' shape=() dtype=float32, numpy=-0.3333333>

结合optimizers进行梯度下降法

learning_rate = 0.1
x = tf.Variable(0.0)
optimizer = keras.optimizers.SGD(lr = learning_rate)
for _ in range(100):
    with tf.GradientTape() as tape:
        z = f(x)
    dz_dx = tape.gradient(z, x)
    optimizer.apply_gradients([(dz_dx, x)])
print(x)

运行结果:

<tf.Variable 'Variable:0' shape=() dtype=float32, numpy=-0.3333333>

以上就是python人工智能自定义求导tf_diffs详解的详细内容,更多关于python自定义求导tf_diffs的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python人工智能自定义求导tf_diffs详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python人工智能语音合成实现案例详解

这篇文章主要为大家介绍了Python人工智能语音合成实现案例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-03-21

Python人工智能构建简单聊天机器人示例详解

这篇文章主要为大家介绍了Python人工智能构建简单聊天机器人示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-03-21

python人工智能算法之随机森林流程详解

这篇文章主要为大家介绍了python人工智能算法之随机森林流程详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-03-21

python人工智能算法之决策树流程示例详解

这篇文章主要为大家介绍了python人工智能算法之决策树流程示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-03-21

探索AI世界不可或缺的Python人工智能库详解

Python人工智能库大全:探索AI世界的必备工具导语:随着人工智能技术的不断发展,Python作为一种简洁且易于读写的编程语言,成为了人工智能领域的热门选择。Python拥有众多优秀的人工智能库,它们为我们提供了丰富的工具和算法,帮助我们
探索AI世界不可或缺的Python人工智能库详解
2023-12-23

详解Python人工智能混合高斯模型运动目标检测

本篇内容主要讲解“详解Python人工智能混合高斯模型运动目标检测”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“详解Python人工智能混合高斯模型运动目标检测”吧!高斯算法提取工作import
2023-06-25

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录