我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python 爱心代码

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python 爱心代码

python程序代码:heart.py

from math import cos, piimport numpy as npimport cv2import os, globclass HeartSignal:    def __init__(self, curve="heart", title="Love U", frame_num=20, seed_points_num=2000, seed_num=None, highlight_rate=0.3,                 background_img_dir="", set_bg_imgs=False, bg_img_scale=0.2, bg_weight=0.3, curve_weight=0.7, frame_width=1080, frame_height=960, scale=10.1,                 base_color=None, highlight_points_color_1=None, highlight_points_color_2=None, wait=100, n_star=5, m_star=2):        super().__init__()        self.curve = curve        self.title = title        self.highlight_points_color_2 = highlight_points_color_2        self.highlight_points_color_1 = highlight_points_color_1        self.highlight_rate = highlight_rate        self.base_color = base_color        self.n_star = n_star        self.m_star = m_star        self.curve_weight = curve_weight        img_paths = glob.glob(background_img_dir + "/*")        self.bg_imgs = []        self.set_bg_imgs = set_bg_imgs        self.bg_weight = bg_weight        if os.path.exists(background_img_dir) and len(img_paths) > 0 and set_bg_imgs:            for img_path in img_paths:                img = cv2.imread(img_path)                self.bg_imgs.append(img)            first_bg = self.bg_imgs[0]            width = int(first_bg.shape[1] * bg_img_scale)            height = int(first_bg.shape[0] * bg_img_scale)            first_bg = cv2.resize(first_bg, (width, height), interpolation=cv2.INTER_AREA)            # 对齐图片,自动裁切中间            new_bg_imgs = [first_bg, ]            for img in self.bg_imgs[1:]:                width_close = abs(first_bg.shape[1] - img.shape[1]) < abs(first_bg.shape[0] - img.shape[0])                if width_close:                    # resize                    height = int(first_bg.shape[1] / img.shape[1] * img.shape[0])                    width = first_bg.shape[1]                    img = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)                    # crop and fill                    if img.shape[0] > first_bg.shape[0]:                        crop_num = img.shape[0] - first_bg.shape[0]                        crop_top = crop_num // 2                        crop_bottom = crop_num - crop_top                        img = np.delete(img, range(crop_top), axis=0)                        img = np.delete(img, range(img.shape[0] - crop_bottom, img.shape[0]), axis=0)                    elif img.shape[0] < first_bg.shape[0]:                        fill_num = first_bg.shape[0] - img.shape[0]                        fill_top = fill_num // 2                        fill_bottom = fill_num - fill_top                        img = np.concatenate([np.zeros([fill_top, width, 3]), img, np.zeros([fill_bottom, width, 3])], axis=0)                else:                    width = int(first_bg.shape[0] / img.shape[0] * img.shape[1])                    height = first_bg.shape[0]                    img = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)                    # crop and fill                    if img.shape[1] > first_bg.shape[1]:                        crop_num = img.shape[1] - first_bg.shape[1]                        crop_top = crop_num // 2                        crop_bottom = crop_num - crop_top                        img = np.delete(img, range(crop_top), axis=1)                        img = np.delete(img, range(img.shape[1] - crop_bottom, img.shape[1]), axis=1)                    elif img.shape[1] < first_bg.shape[1]:                        fill_num = first_bg.shape[1] - img.shape[1]                        fill_top = fill_num // 2                        fill_bottom = fill_num - fill_top                        img = np.concatenate([np.zeros([fill_top, width, 3]), img, np.zeros([fill_bottom, width, 3])], axis=1)                new_bg_imgs.append(img)            self.bg_imgs = new_bg_imgs            assert all(img.shape[0] == first_bg.shape[0] and img.shape[1] == first_bg.shape[1] for img in self.bg_imgs), "背景图片宽和高不一致"            self.frame_width = self.bg_imgs[0].shape[1]            self.frame_height = self.bg_imgs[0].shape[0]        else:            self.frame_width = frame_width  # 窗口宽度            self.frame_height = frame_height  # 窗口高度        self.center_x = self.frame_width / 2        self.center_y = self.frame_height / 2        self.main_curve_width = -1        self.main_curve_height = -1        self.frame_points = []  # 每帧动态点坐标        self.frame_num = frame_num  # 帧数        self.seed_num = seed_num  # 伪随机种子,设置以后除光晕外粒子相对位置不动(减少内部闪烁感)        self.seed_points_num = seed_points_num  # 主图粒子数        self.scale = scale  # 缩放比例        self.wait = wait    def curve_function(self, curve):        curve_dict = {            "heart": self.heart_function,            "butterfly": self.butterfly_function,            "star": self.star_function,        }        return curve_dict[curve]    def heart_function(self, t, frame_idx=0, scale=5.20):        """        图形方程        :param frame_idx: 帧的索引,根据帧数变换心形        :param scale: 放大比例        :param t: 参数        :return: 坐标        """        trans = 3 - (1 + self.periodic_func(frame_idx, self.frame_num)) * 0.5  # 改变心形饱满度度的参数        x = 15 * (np.sin(t) ** 3)        t = np.where((pi < t) & (t < 2 * pi), 2 * pi - t, t)  # 翻转x > 0部分的图形到3、4象限        y = -(14 * np.cos(t) - 4 * np.cos(2 * t) - 2 * np.cos(3 * t) - np.cos(trans * t))        ign_area = 0.15        center_ids = np.where((x > -ign_area) & (x < ign_area))        if np.random.random() > 0.32:            x, y = np.delete(x, center_ids), np.delete(y, center_ids)  # 删除稠密部分的扩散,为了美观        # 放大        x *= scale        y *= scale        # 移到画布中央        x += self.center_x        y += self.center_y        # 原心形方程        # x = 15 * (sin(t) ** 3)        # y = -(14 * cos(t) - 4 * cos(2 * t) - 2 * cos(3 * t) - cos(3 * t))        return x.astype(int), y.astype(int)    def butterfly_function(self, t, frame_idx=0, scale=5.2):        """        图形函数        :param frame_idx:        :param scale: 放大比例        :param t: 参数        :return: 坐标        """        # 基础函数        # t = t * pi        p = np.exp(np.sin(t)) - 2.5 * np.cos(4 * t) + np.sin(t) ** 5        x = 5 * p * np.cos(t)        y = - 5 * p * np.sin(t)        # 放大        x *= scale        y *= scale        # 移到画布中央        x += self.center_x        y += self.center_y        return x.astype(int), y.astype(int)    def star_function(self, t, frame_idx=0, scale=5.2):        n = self.n_star / self.m_star        p = np.cos(pi / n) / np.cos(pi / n - (t % (2 * pi / n)))        x = 15 * p * np.cos(t)        y = 15 * p * np.sin(t)        # 放大        x *= scale        y *= scale        # 移到画布中央        x += self.center_x        y += self.center_y        return x.astype(int), y.astype(int)    def shrink(self, x, y, ratio, offset=1, p=0.5, dist_func="uniform"):        """        带随机位移的抖动        :param x: 原x        :param y: 原y        :param ratio: 缩放比例        :param p:        :param offset:        :return: 转换后的x,y坐标        """        x_ = (x - self.center_x)        y_ = (y - self.center_y)        force = 1 / ((x_ ** 2 + y_ ** 2) ** p + 1e-30)        dx = ratio * force * x_        dy = ratio * force * y_        def d_offset(x):            if dist_func == "uniform":                return x + np.random.uniform(-offset, offset, size=x.shape)            elif dist_func == "norm":                return x + offset * np.random.normal(0, 1, size=x.shape)        dx, dy = d_offset(dx), d_offset(dy)        return x - dx, y - dy    def scatter(self, x, y, alpha=0.75, beta=0.15):        """        随机内部扩散的坐标变换        :param alpha: 扩散因子 - 松散        :param x: 原x        :param y: 原y        :param beta: 扩散因子 - 距离        :return: x,y 新坐标        """        ratio_x = - beta * np.log(np.random.random(x.shape) * alpha)        ratio_y = - beta * np.log(np.random.random(y.shape) * alpha)        dx = ratio_x * (x - self.center_x)        dy = ratio_y * (y - self.center_y)        return x - dx, y - dy    def periodic_func(self, x, x_num):        """        跳动周期曲线        :param p: 参数        :return: y        """        # 可以尝试换其他的动态函数,达到更有力量的效果(贝塞尔?)        def ori_func(t):            return cos(t)        func_period = 2 * pi        return ori_func(x / x_num * func_period)    def gen_points(self, points_num, frame_idx, shape_func):        # 用周期函数计算得到一个因子,用到所有组成部件上,使得各个部分的变化周期一致        cy = self.periodic_func(frame_idx, self.frame_num)        ratio = 10 * cy        # 图形        period = 2 * pi * self.m_star if self.curve == "star" else 2 * pi        seed_points = np.linspace(0, period, points_num)        seed_x, seed_y = shape_func(seed_points, frame_idx, scale=self.scale)        x, y = self.shrink(seed_x, seed_y, ratio, offset=2)        curve_width, curve_height = int(x.max() - x.min()), int(y.max() - y.min())        self.main_curve_width = max(self.main_curve_width, curve_width)        self.main_curve_height = max(self.main_curve_height, curve_height)        point_size = np.random.choice([1, 2], x.shape, replace=True, p=[0.5, 0.5])        tag = np.ones_like(x)        def delete_points(x_, y_, ign_area, ign_prop):            ign_area = ign_area            center_ids = np.where((x_ > self.center_x - ign_area) & (x_ < self.center_x + ign_area))            center_ids = center_ids[0]            np.random.shuffle(center_ids)            del_num = round(len(center_ids) * ign_prop)            del_ids = center_ids[:del_num]            x_, y_ = np.delete(x_, del_ids), np.delete(y_, del_ids)  # 删除稠密部分的扩散,为了美观            return x_, y_        # 多层次扩散        for idx, beta in enumerate(np.linspace(0.05, 0.2, 6)):            alpha = 1 - beta            x_, y_ = self.scatter(seed_x, seed_y, alpha, beta)            x_, y_ = self.shrink(x_, y_, ratio, offset=round(beta * 15))            x = np.concatenate((x, x_), 0)            y = np.concatenate((y, y_), 0)            p_size = np.random.choice([1, 2], x_.shape, replace=True, p=[0.55 + beta, 0.45 - beta])            point_size = np.concatenate((point_size, p_size), 0)            tag_ = np.ones_like(x_) * 2            tag = np.concatenate((tag, tag_), 0)        # 光晕        halo_ratio = int(7 + 2 * abs(cy))  # 收缩比例随周期变化        # 基础光晕        x_, y_ = shape_func(seed_points, frame_idx, scale=self.scale + 0.9)        x_1, y_1 = self.shrink(x_, y_, halo_ratio, offset=18, dist_func="uniform")        x_1, y_1 = delete_points(x_1, y_1, 20, 0.5)        x = np.concatenate((x, x_1), 0)        y = np.concatenate((y, y_1), 0)        # 炸裂感光晕        halo_number = int(points_num * 0.6 + points_num * abs(cy))  # 光晕点数也周期变化        seed_points = np.random.uniform(0, 2 * pi, halo_number)        x_, y_ = shape_func(seed_points, frame_idx, scale=self.scale + 0.9)        x_2, y_2 = self.shrink(x_, y_, halo_ratio, offset=int(6 + 15 * abs(cy)), dist_func="norm")        x_2, y_2 = delete_points(x_2, y_2, 20, 0.5)        x = np.concatenate((x, x_2), 0)        y = np.concatenate((y, y_2), 0)        # 膨胀光晕        x_3, y_3 = shape_func(np.linspace(0, 2 * pi, int(points_num * .4)),                 frame_idx, scale=self.scale + 0.2)        x_3, y_3 = self.shrink(x_3, y_3, ratio * 2, offset=6)        x = np.concatenate((x, x_3), 0)        y = np.concatenate((y, y_3), 0)        halo_len = x_1.shape[0] + x_2.shape[0] + x_3.shape[0]        p_size = np.random.choice([1, 2, 3], halo_len, replace=True, p=[0.7, 0.2, 0.1])        point_size = np.concatenate((point_size, p_size), 0)        tag_ = np.ones(halo_len) * 2 * 3        tag = np.concatenate((tag, tag_), 0)        x_y = np.around(np.stack([x, y], axis=1), 0)        x, y = x_y[:, 0], x_y[:, 1]        return x, y, point_size, tag    def get_frames(self, shape_func):        for frame_idx in range(self.frame_num):            np.random.seed(self.seed_num)            self.frame_points.append(self.gen_points(self.seed_points_num, frame_idx, shape_func))        frames = []        def add_points(frame, x, y, size, tag):            highlight1 = np.array(self.highlight_points_color_1, dtype='uint8')            highlight2 = np.array(self.highlight_points_color_2, dtype='uint8')            base_col = np.array(self.base_color, dtype='uint8')            x, y = x.astype(int), y.astype(int)            frame[y, x] = base_col            size_2 = np.int64(size == 2)            frame[y, x + size_2] = base_col            frame[y + size_2, x] = base_col            size_3 = np.int64(size == 3)            frame[y + size_3, x] = base_col            frame[y - size_3, x] = base_col            frame[y, x + size_3] = base_col            frame[y, x - size_3] = base_col            frame[y + size_3, x + size_3] = base_col            frame[y - size_3, x - size_3] = base_col            # frame[y - size_3, x + size_3] = color            # frame[y + size_3, x - size_3] = color            # 高光            random_sample = np.random.choice([1, 0], size=tag.shape, p=[self.highlight_rate, 1 - self.highlight_rate])            # tag2_size1 = np.int64((tag <= 2) & (size == 1) & (random_sample == 1))            # frame[y * tag2_size1, x * tag2_size1] = highlight2            tag2_size2 = np.int64((tag <= 2) & (size == 2) & (random_sample == 1))            frame[y * tag2_size2, x * tag2_size2] = highlight1            # frame[y * tag2_size2, (x + 1) * tag2_size2] = highlight2            # frame[(y + 1) * tag2_size2, x * tag2_size2] = highlight2            frame[(y + 1) * tag2_size2, (x + 1) * tag2_size2] = highlight2        for x, y, size, tag in self.frame_points:            frame = np.zeros([self.frame_height, self.frame_width, 3], dtype="uint8")            add_points(frame, x, y, size, tag)            frames.append(frame)        return frames    def draw(self, times=10):        frames = self.get_frames(self.curve_function(self.curve))        for i in range(times):            for frame in frames:                frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)                if len(self.bg_imgs) > 0 and self.set_bg_imgs:                    frame = cv2.addWeighted(self.bg_imgs[i % len(self.bg_imgs)], self.bg_weight, frame, self.curve_weight, 0)                cv2.imshow(self.title, frame)                cv2.waitKey(self.wait)if __name__ == '__main__':    import yaml    settings = yaml.load(open("./settings.yaml", "r", encoding="utf-8"), Loader=yaml.FullLoader)    if settings["wait"] == -1:        settings["wait"] = int(settings["period_time"] / settings["frame_num"])    del settings["period_time"]    times = settings["times"]    del settings["times"]    heart = HeartSignal(seed_num=5201314, **settings)    heart.draw(times)

其中也要到这个py文件的相同的文件夹里引入settings.yaml文件:

# 颜色:RGB三原色数值 0~255# 设置高光时,尽量选择接近主色的颜色,看起来会和谐一点# 视频里的蓝色调#base_color: # 主色  默认玫瑰粉#  - 30#  - 100#  - 100#highlight_points_color_1: # 高光粒子色1 默认淡紫色#  - 150#  - 120#  - 220#highlight_points_color_2: # 高光粒子色2 默认淡粉色#  - 128#  - 140#  - 140base_color: # 主色  默认玫瑰粉  - 228  - 100  - 100highlight_points_color_1: # 高光粒子色1 默认淡紫色  - 180  - 87  - 200highlight_points_color_2: # 高光粒子色2 默认淡粉色  - 228  - 140  - 140period_time: 1000 * 2  # 周期时间,默认1.5s一个周期times: 5 # 播放周期数,一个周期跳动1次frame_num: 24  # 一个周期的生成帧数wait: 60  # 每一帧停留时间, 设置太短可能造成闪屏,设置 -1 自动设置为 period_time / frame_numseed_points_num: 2000  # 构成主图的种子粒子数,总粒子数是这个的8倍左右(包括散点和光晕)highlight_rate: 0.2 # 高光粒子的比例frame_width: 720  # 窗口宽度,单位像素,设置背景图片后失效frame_height: 640  # 窗口高度,单位像素,设置背景图片后失效scale: 9.1  # 主图缩放比例curve: "butterfly"  # 图案类型:heart, butterfly, starn_star: 7 # n-角型/星,如果curve设置成star才会生效,五角星:n-star:5, m-star:2m_star: 3 # curve设置成star才会生效,n-角形 m-star都是1,n-角星 m-star大于1,比如 七角星:n-star:7, m-star:2 或 3title: "Love Li Xun"  # 仅支持字母,中文乱码background_img_dir: "class="lazy" data-src/center_imgs" # 这个目录放置背景图片,建议像素在400 X 400以上,否则可能报错,如果图片实在小,可以调整上面scale把爱心缩小set_bg_imgs: false # true或false,设置false用默认黑背景bg_img_scale: 0.6 # 0 - 1,背景图片缩放比例bg_weight: 0.4 # 0 - 1,背景图片权重,可看做透明度吧curve_weight: 1 # 同上# ======================== 推荐参数: 直接复制数值替换上面对应参数 ==================================# 蝴蝶,报错很可能是蝴蝶缩放大小超出窗口宽和高# curve: "butterfly"# frame_width: 800# frame_height: 720# scale: 60# base_color: [100, 100, 228]# highlight_points_color_1: [180, 87, 200]# highlight_points_color_2: [228, 140, 140]

本代码是搬运github上的:

网址如下:

https://github.com/131250208/FunnyToys/blob/main/heart.py

演示:

 

来源地址:https://blog.csdn.net/CSH__/article/details/127935092

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python 爱心代码

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

怎么用python代码画爱心

这篇文章主要介绍“怎么用python代码画爱心”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“怎么用python代码画爱心”文章能帮助大家解决问题。代码:效果图:但左看右看,觉得背后的逻辑,比如for
2023-06-29

python爱心代码编程怎么写

步骤为:1、确定爱心的样式和大小。在纸上画出你想要的爱心形状,然后将其转化为字符打印的方式;2、创建一个列表,用来存储爱心的每一行字符;3、根据爱心的形状,将每一行的字符添加到列表中。可以使用空格、星号等字符来表示爱心的形状;4、使用循环遍
python爱心代码编程怎么写
2023-11-20

六行python代码的爱心曲线

喔家ArchiSelf前些日子在做绩效体系的时候,遇到了一件囧事,居然忘记怎样在Excel上拟合正态分布了,尽管在第二天重新拾起了Excel中那几个常见的函数和图像的做法,还是十分的惭愧。实际上,当时有效偏颇了,忽略了问题的本质,解决数据分
2023-01-31

如何编写 Java 爱心代码?(java爱心代码怎么写)

在Java编程中,编写一个爱心代码是一件很有趣的事情,它不仅可以展示你的编程技巧,还可以给你带来一些乐趣。下面,我将为大家详细介绍如何编写Java爱心代码。一、准备工作安装Java开发环境(JDK):如果
如何编写 Java 爱心代码?(java爱心代码怎么写)
Java2024-12-17

Python满屏飘爱心代码怎么写

你可以使用Python的turtle模块来实现一个满屏飘爱心的效果。下面是一个示例代码:```pythonimport turtleimport random# 设置画布大小turtle.setup(width=800, height=60
2023-08-08

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录