我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python实现堆排序案例详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python实现堆排序案例详解

Python实现堆排序

一、堆排序简介

堆排序(Heap Sort)是利用堆这种数据结构所设计的一种排序算法。

堆的结构是一棵完全二叉树的结构,并且满足堆积的性质:每个节点(叶节点除外)的值都大于等于(或都小于等于)它的子节点。

关于二叉树和完全二叉树的介绍可以参考:https://www.jb51.net/article/222487.htm

堆排序先按从上到下、从左到右的顺序将待排序列表中的元素构造成一棵完全二叉树,然后对完全二叉树进行调整,使其满足堆积的性质:每个节点(叶节点除外)的值都大于等于(或都小于等于)它的子节点。构建出堆后,将堆顶与堆尾进行交换,然后将堆尾从堆中取出来,取出来的数据就是最大(或最小)的数据。重复构建堆并将堆顶和堆尾进行交换,取出堆尾的数据,直到堆中的数据全部被取出,列表排序完成。

堆结构分为大顶堆和小顶堆:

1. 大顶堆:每个节点(叶节点除外)的值都大于等于其子节点的值,根节点的值是所有节点中最大的,所以叫大顶堆,在堆排序算法中用于升序排列。

2. 小顶堆:每个节点(叶节点除外)的值都小于等于其子节点的值,根节点的值是所有节点中最小的,所以叫小顶堆,在堆排序算法中用于降序排列。

二、堆排序原理

堆排序的原理如下:

1. 将待排序列表中的数据按从上到下、从左到右的顺序构造成一棵完全二叉树。

2. 将完全二叉树中每个节点(叶节点除外)的值与其子节点(子节点有一个或两个)中较大的值进行比较,如果节点的值小于子节点的值,则交换他们的位置(大顶堆,小顶堆反之)。

3. 将节点与子节点进行交换后,要继续比较子节点与孙节点的值,直到不需要交换或子节点是叶节点时停止。比较完所有的非叶节点后,即可构建出堆结构。

4. 将数据构造成堆结构后,将堆顶与堆尾交换,然后将堆尾从堆中取出来,添加到已排序序列中,完成一轮堆排序,堆中的数据个数减1。

5. 重复步骤2,3,4,直到堆中的数据全部被取出,列表排序完成。

以列表 [10, 17, 50, 7, 30, 24, 27, 45, 15, 5, 36, 21] 进行升序排列为例。列表的初始状态如下图。

要进行升序排序,则构造堆结构时,使用大顶堆。

1. 将待排序列表中的数据按从上到下、从左到右的顺序构造成一棵完全二叉树。

2. 从完全二叉树的最后一个非叶节点开始,将它的值与其子节点中较大的值进行比较,如果值小于子节点则交换。24是最后一个非叶子节点,它只有一个子节点21,24大于21,不需要交换。

3. 继续将倒数第二个非叶节点的值与其子节点中较大的值进行比较,如果值小于子节点则交换。节点30有两个子节点5和36,较大的是36,30小于36,交换位置。

4. 重复对下一个节点进行比较。7小于45,交换位置。

5. 继续重复,50大于27,不需要交换位置。如果不需要进行交换,则不用再比较子节点与孙节点。

6. 继续重复,17小于45,交换位置。

7. 17和45交换位置之后,17交换到了子节点的位置,还需要继续将其与孙节点进行比较。17大于15,不需要交换。

8. 继续对下一个节点进行比较,10小于50,交换位置。

9. 10和50交换位置之后,10交换到了子节点的位置,还需要继续将其与孙节点进行比较。10小于于27,交换位置。

10. 此时,一个大顶堆构造完成,满足了堆积的性质:每个节点(叶节点除外)的值都大于等于它的子节点。

11. 大顶堆构建完成后,将堆顶与堆尾交换位置,然后将堆尾从堆中取出。将50和21交换位置,交换后21到了堆顶,50(最大的数据)到了堆尾,然后将50从堆中取出。

12. 将50从堆中取出后,找到了待排序列表中的最大值,50添加到已排序序列中,第一轮堆排序完成,堆中的元素个数减1。

13. 取出最大数据后,重复将完全二叉树构建成大顶堆,交换堆顶和堆尾,取出堆尾。这样每次都是取出当前堆中最大的数据,添加到已排序序列中,直到堆中的数据全部被取出。

14. 循环进行 n 轮堆排序之后,列表排序完成。排序结果如下图。

三、Python实现堆排序


# coding=utf-8
def heap_sort(array):
    first = len(array) // 2 - 1
    for start in range(first, -1, -1):
        # 从下到上,从右到左对每个非叶节点进行调整,循环构建成大顶堆
        big_heap(array, start, len(array) - 1)
    for end in range(len(array) - 1, 0, -1):
        # 交换堆顶和堆尾的数据
        array[0], array[end] = array[end], array[0]
        # 重新调整完全二叉树,构造成大顶堆
        big_heap(array, 0, end - 1)
    return array
 
 
def big_heap(array, start, end):
    root = start
    # 左孩子的索引
    child = root * 2 + 1
    while child <= end:
        # 节点有右子节点,并且右子节点的值大于左子节点,则将child变为右子节点的索引
        if child + 1 <= end and array[child] < array[child + 1]:
            child += 1
        if array[root] < array[child]:
            # 交换节点与子节点中较大者的值
            array[root], array[child] = array[child], array[root]
            # 交换值后,如果存在孙节点,则将root设置为子节点,继续与孙节点进行比较
            root = child
            child = root * 2 + 1
        else:
            break
 
 
if __name__ == '__main__':
    array = [10, 17, 50, 7, 30, 24, 27, 45, 15, 5, 36, 21]
    print(heap_sort(array))

运行结果:

[5, 7, 10, 15, 17, 21, 24, 27, 30, 36, 45, 50]

代码中,先实现一个big_heap(array, start, end)函数,用于比较节点与其子节点中的较大者,如果值小于子节点的值则进行交换。代码中不需要真正将数据都添加到完全二叉树中,而是根据待排序列表中的数据索引来得到节点与子节点的位置关系。完全二叉树中,节点的索引为i,则它的左子节点的索引为2*i+1,右子节点的索引为2*i+2,有n个节点的完全二叉树中,非叶子节点有n//2个,列表的索引从0开始,所以索引为0~n//2-1的数据为非叶子节点。

实现堆排序函数heap_sort(array)时,先调用big_heap(array, start, end)函数循环对非叶子节点进行调整,构造大顶堆,然后将堆顶和堆尾交换,将堆尾从堆中取出,添加到已排序序列中,完成一轮堆排序。然后循环构建大顶堆,每次将最大的元素取出,直到堆中的数据全部被取出。

四、堆排序的时间复杂度和稳定性

1. 时间复杂度

在堆排序中,构建一次大顶堆可以取出一个元素,完成一轮堆排序,一共需要进行n轮堆排序。每次构建大顶堆时,需要进行的比较和交换次数平均为logn(第一轮构建堆时步骤多,后面重建堆时步骤会少很多)。时间复杂度为 T(n)=nlogn ,再乘每次操作的步骤数(常数,不影响大O记法),所以堆排序的时间复杂度为 O(nlogn) 。

2. 稳定性

在堆排序中,会交换节点与子节点,如果有相等的数据,可能会改变相等数据的相对次序。所以堆排序是一种不稳定的排序算法。

到此这篇关于Python实现堆排序案例详解的文章就介绍到这了,更多相关Python实现堆排序内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python实现堆排序案例详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python实现堆排序的方法详解

本文实例讲述了Python实现堆排序的方法。分享给大家供大家参考,具体如下: 堆排序作是基本排序方法的一种,类似于合并排序而不像插入排序,它的运行时间为O(nlogn),像插入排序而不像合并排序,它是一种原地排序算法,除了输入数组以外只占用
2022-06-04

Java 归并排序算法、堆排序算法实例详解

基本思想:  归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。归并排序示例:合并方法:设r[i…n]由两个有序子表r[i…m
2023-05-31

python堆排序算法怎么实现

堆排序算法的实现步骤如下:构建最大堆(Max Heap):首先将待排序的序列构建成一个最大堆。从最后一个非叶子节点开始,依次将当前节点与其子节点进行比较,如果当前节点的值小于子节点的值,则将两者交换位置,并继续比较下一个子节点,直到当前节点
2023-10-26

c++实现堆排序的示例代码

本文主要介绍了c++实现堆排序的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-02-02

Java实现快速排序和堆排序的示例代码

这篇文章主要为大家详细介绍了快速排序和堆排序的多种语言的实现(JavaScript、Python、Go语言、Java、C++),感兴趣的小伙伴可以了解一下
2022-12-22

Java数组实现堆排序的示例分析

这篇文章主要为大家展示了“Java数组实现堆排序的示例分析”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“Java数组实现堆排序的示例分析”这篇文章吧。数组全部入堆,再出堆从后向前插入回数组中,数
2023-05-30

Python实现的堆排序算法原理与用法实例分析

本文实例讲述了Python实现的堆排序算法。分享给大家供大家参考,具体如下: 堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆性质:即子结点的键值或索引总是小于(或者大于)它的
2022-06-04

python 排序算法总结及实例详解

总结了一下常见集中排序的算法归并排序归并排序也称合并排序,是分治法的典型应用。分治思想是将每个问题分解成个个小问题,将每个小问题解决,然后合并。 具体的归并排序就是,将一组无序数按n/2递归分解成只有一个元素的子项,一个元素就是已经排好序的
2022-06-04

TypeScript十大排序算法插入排序实现示例详解

这篇文章主要为大家介绍了TypeScript十大排序算法插入排序实现示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-02-23

详解Python中的选择排序实现

Python中的选择排序算法详解选择排序是一种简单但效率较低的排序算法,它的基本思想是每次从待排序的序列中找出最小(或最大)的元素,放到已排序序列的末尾。通过重复这个过程,直到所有元素都排序完毕。选择排序的步骤如下:遍历序列,找到最小(
详解Python中的选择排序实现
2024-02-03

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录