我的编程空间,编程开发者的网络收藏夹
学习永远不晚

java图论普利姆及克鲁斯卡算法解决最小生成树问题详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

java图论普利姆及克鲁斯卡算法解决最小生成树问题详解

什么是最小生成树?

最小生成树(Minimum Cost Spanning Tree),简称MST.

最小生成树要求图是连通图。连通图指图中任意两个顶点都有路径相通,通常指无向图。理论上如果图是有向、多重边的,也能求最小生成树,只是不太常见。

普利姆算法 

算法介绍

应用 --> 修路问题 

图解分析 

假设从A村开始

1.从<A>顶点开始处理==============>> <A,G>

A - C[7]   A - G[2]  A - B[5]

2.<A,G>开始,将A和G顶点和他们相邻的还没有访问的顶点进行处理=> <A,G,B,E>

A - C[7]   G - E[4]  G - F[6]  B - D[9]

3.<A,G,B>开始,将A,G,B顶点和他们相邻的还没有访问的顶点进行处理 => <A,G,B,E>

A - C[7]  G - E[4]  G - F[6]   B - D[9]

...........

4.<A,G,B,E> -> F//第4次大循环,对应边<E,F> 权值:5

5.<A,G,B,E,F> -> D//第5次大循环,对应边<F,D>权值:4

6.<A,G,B,E,F,D> -> C//第6次大循环,对应边<A,C>权值:7


public class PrimAlgorithm {
	public static void main(String[] args) {
		// 测试图是否创建成功
		char[] data = new char[] { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
		int verxs = data.length;
		// 邻接矩阵的关系使用二维数组表示,10000这个大数,表示两个点不连通
		int[][] weight = new int[][] { { 10000, 5, 7, 10000, 10000, 10000, 2 }, { 5, 10000, 10000, 9, 10000, 10000, 3 },
				{ 7, 10000, 10000, 10000, 8, 10000, 10000 }, { 10000, 9, 10000, 10000, 10000, 4, 10000 },
				{ 10000, 10000, 8, 10000, 10000, 5, 4 }, { 10000, 10000, 10000, 4, 5, 10000, 6 },
				{ 2, 3, 10000, 10000, 4, 6, 10000 }, };
		// 创建MGraph对象
		MGraph graph = new MGraph(verxs);
		// 创建一个MinTree对象
		MinTree minTree = new MinTree();
		minTree.createGraph(graph, verxs, data, weight);
		// 输出
		minTree.showGraph(graph);
		// 测试普利姆算法
		minTree.prim(graph, 0);
	}
} 
//创建最小生成树 -> 村庄的图
class MinTree {
	
	public void createGraph(MGraph graph, int verxs, char data[], int[][] weight) {
		int i, j;
		for (i = 0; i < verxs; i++) {
			graph.data[i] = data[i];
			for (j = 0; j < verxs; j++) {
				graph.weight[i][j] = weight[i][j];
			}
		}
	}
	
	public void showGraph(MGraph graph) {
		for (int[] link : graph.weight) {
			System.out.println(Arrays.toString(link));
		}
	}
 	
	public void prim(MGraph graph, int v) {
		// visited[] 标记节点(顶点)是否被访问过
		int visited[] = new int[graph.verxs];
		// visited[] 默认元素的值都是0,表示没有访问过
		for (int i = 0; i < graph.verxs; i++) {
			visited[i] = 0;
		}
		// 把当前这个节点标记为已访问
		visited[v] = 1;
		// h1 和 h2 记录两个顶点的下标
		int h1 = -1;
		int h2 = -1;
		int minWeight = 10000;// 将minWeight初始成一个大数,后面在遍历过程中,会被替换
		for (int k = 1; k < graph.verxs; k++) {// 因为有graph,verxs顶点,普利姆算法结束后,有graph.verxs -1边
			// 这个是确定每一次生成的子图,那个节点和这次遍历的节点距离最近
			for (int i = 0; i < graph.verxs; i++) {// i节点表示被访问过的节点
				for (int j = 0; j < graph.verxs; j++) {// j节点表示还没有访问过的节点
					if (visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {
						// 替换minWeight(寻找已经访问过的节点和未访问过的节点间的权值最小的边)
						minWeight = graph.weight[i][j];
						h1 = i;
						h2 = j;
					}
				}
			}
			// 找到一条边最小
			System.out.println("边<" + graph.data[h1] + "," + graph.data[h2] + ">权值:" + minWeight);
			// 将当前这个节点标记未已经访问
			visited[h2] = 1;
			// minWeight 重新设置为最大值10000
			minWeight = 10000;
		}
	}
} 
class MGraph {
	int verxs; // 表示图的节点个数
	char[] data; // 存放节点数据
	int[][] weight; // 存放边,就是邻接矩阵
 
	public MGraph(int verxs) {
		this.verxs = verxs;
		data = new char[verxs];
		weight = new int[verxs][verxs];
	}
}

克鲁斯卡尔算法

算法介绍

应用场景 -- 公交站问题 

算法图解 

以上图G4为例,来对克鲁斯卡尔进行演示(假设,用数组R保存最小生成树结果)。

 

算法分析 

根据前面介绍的克鲁斯卡尔算法的基本思想和做法,我们能够了解到,克鲁斯卡尔算法重点需要解决的以下两个问题:

问题一:对图的所有边按照权值大小进行排序。

问题二:将边添加到最小生成树中时,咋样判断是否形成了回路。

问题一很好解决,采用排序算法进行排序即可。

问题二,处理方式是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"。然后每次需要将一条边添加到最小生成树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。

如何判断是否构成回路

举例说明(如图)

代码实现 


public class KruskalCase {
	private int edgeNum;// 边的个数
	private char[] vertexs;// 顶点数组
	private int[][] matrix;// 邻接矩阵
	// 使用INF 表示两个顶点不能连通
	private static final int INF = Integer.MAX_VALUE;
	public static void main(String[] args) {
		char[] vertexs = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
		// 克鲁斯卡尔算法的邻接矩阵
		int matrix[][] = {
				
				{ 0, 12, INF, INF, INF, 16, 14 }, { 12, 0, 0, INF, INF, 7, INF },
				{ INF, 10, 0, 3, 5, 6, INF }, { INF, INF, 3, 0, 4, INF, INF },
				{ INF, INF, 5, 4, 0, 2, 8 }, { 16, 7, 6, INF, 2, 0, 9 },
				{ 14, INF, INF, INF, 8, 9, 0 } };
		// 创建KruskalCase 对象实例
		KruskalCase kruskalCase = new KruskalCase(vertexs, matrix);
		// 输出构建的
		kruskalCase.print();
		kruskalCase.kruskal();
	} 
	// 构造器
	public KruskalCase(char[] vertexs, int[][] matrix) {
		// 初始化顶点数和边的个数
		int vlen = vertexs.length;
 
		// 初始化顶点,使用的是复制拷贝的方式
		this.vertexs = new char[vlen];
		for (int i = 0; i < vertexs.length; i++) {
			this.vertexs[i] = vertexs[i];
		} 
		// 初始化边,使用的是复制拷贝的方式
		this.matrix = new int[vlen][vlen];
		for (int i = 0; i < vlen; i++) {
			for (int j = 0; j < vlen; j++) {
				this.matrix[i][j] = matrix[i][j];
			}
		}
		// 统计边的条数
		for (int i = 0; i < vlen; i++) {
			for (int j = i + 1; i < vlen; j++) {
				if (this.matrix[i][j] != INF) {
					edgeNum++;
				}
			}
		}
	}
 	public void kruskal() {
		int index = 0;// 表示最后结果数组的索引
		int[] ends = new int[edgeNum];// 用于保存"已有最小生成树"中的每个顶点在最小生成树中的终点
		// 创建结果数组,保存最后的最小生成树
		EData[] rets = new EData[edgeNum]; 
		// 获取图中所有的边的集合,一共有12条边
		EData[] edges = getEdges();
		System.out.println("图的边的集合=" + Arrays.toString(edges) + "共" + edges.length);		
		//按照边的权值大小进行排序(从小到大)
		sortEdges(edges);		
		//遍历edges数组,将边添加到最小生成树中时,判断准备加入的边是否形成了回路,如果没有,就加入rets,否则不能加入
		for(int i = 0;i < edgeNum;i++) {
			//获取到第i条边的第一个顶点(起点)
			int p1 = getPosition(edges[i].start);
			//获取到第i条边的第2个顶点
			int p2 = getPosition(edges[i].end);
			//获取p1这个顶点在已有最小生成树中的终点
			int m = getEnd(ends, p1);
			//获取p2这个顶点在已有最小生成树中的终点
			int n = getEnd(ends, p2);
			//是否构成回路
			if(m != n) {//没有构成回路
				ends[m] = n;//设置m在"已有最小生成树"中的终点<E,F> [0,0,0,0,5,0,0,0,0,0,0]
				rets[index++] = edges[i];//有一条边加入到rets数组
			}
		}
		//统计并打印"最小生成树",输出rets
		System.out.println("最小生成树为");
		for(int i = 0;i < index;i++) {
			System.out.println(rets[i]);
		}
	} 
	// 打印邻接矩阵
	public void print() {
		System.out.println("邻接矩阵为:\n");
		for (int i = 0; i < vertexs.length; i++) {
			for (int j = 0; j < vertexs.length; j++) {
				System.out.printf("%20d\t", matrix[i][j]);
			}
			System.out.println();
		}
	}
 	
	private void sortEdges(EData[] edges) {
		for (int i = 0; i < edges.length - 1; i++) {
			for (int j = 0; j < edges.length - 1 - i; j++) {
				if (edges[j].weight > edges[j + 1].weight) {// 交换
					EData tmp = edges[j];
					edges[j] = edges[j + 1];
					edges[j + 1] = tmp;
				}
			}
		}
	} 
	
	private int getPosition(char ch) {
		for (int i = 0; i < vertexs.length; i++) {
			if (vertexs[i] == ch) {// 找到
				return i;
			}
		}
		// 找不到,返回-1
		return -1;
	} 
	
	private EData[] getEdges() {
		int index = 0;
		EData[] edges = new EData[edgeNum];
		for (int i = 0; i < vertexs.length; i++) {
			for (int j = i + 1; j < vertexs.length; j++) {
				if (matrix[i][j] != INF) {
					edges[index++] = new EData(vertexs[i], vertexs[j], matrix[i][j]);
				}
			}
		}
		return edges;
	}
	
	private int getEnd(int[] ends, int i) {
		while (ends[i] != 0) {
			i = ends[i];
		}
		return i;
	}
}
//创建一个类EData,它的对象实例就表示一条边
class EData {
	char start;// 边的一个点
	char end;// 边的另外一个点
	int weight;// 边的权值
	// 构造器 
	public EData(char start, char end, int weight) {
		this.start = start;
		this.end = end;
		this.weight = weight;
	} 
	// 重写toString,便于输出边
	@Override
	public String toString() {
		return "EData [start=" + start + ", end=" + end + ", weight=" + weight + "]";
	}
 
}

以上就是java图论普利姆及克鲁斯卡算法解决最小生成树问题详解的详细内容,更多关于图论普利姆及克鲁斯卡算法解决最小生成树的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

java图论普利姆及克鲁斯卡算法解决最小生成树问题详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录