我的编程空间,编程开发者的网络收藏夹
学习永远不晚

数据的舞台:Python 数据可视化的聚光灯

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

数据的舞台:Python 数据可视化的聚光灯

Seaborn:高级可视化

Seaborn 建立在 Matplotlib 之上,提供高级功能,例如内置主题、统计图和地理绘制。Seaborn 专注于创建美观且信息丰富的可视化,使其非常适合探索性和统计分析。

Plotly:交互式和动态可视化

Plotly 是一位交互式和动态可视化专家。它支持 3D 绘图、地图绘制和实时流数据。Plotly 的交互式图表允许用户平移、缩放和旋转数据,以获得更深入的洞察。

Bokeh:Web 驱动的可视化

Bokeh 是一个 web 驱动的可视化库,它使用 JavaScript 生成交互式图表和仪表板。Bokeh 的可视化可以嵌入到 web 应用程序和笔记本中,实现无缝的数据探索和展示。

Pandas Profiling:数据分析与可视化

Pandas Profiling 是一个独特的库,它生成一个交互式 HTML 报告,其中包含有关数据框架的统计信息、可视化和数据质量指标。此报告为数据分析师和机器学习工程师提供了宝贵的见解和洞察力。

Plotnine:R 风格的可视化

Plotnine 是一个受 R 语言 ggplot2 库启发的 Python 库。它提供了一个基于语法的界面,用于创建优雅且可重复的统计图形。Plotnine 以其简洁性和易用性而著称。

PyViz:数据可视化生态系统

PyViz 是一个包含多个 Python 数据可视化库的生态系统。它包括前面讨论的库,以及其他专门用于特定领域的可视化任务的库,例如地理空间数据和网络图。

选择合适的库

选择合适的 Python 数据可视化库取决于具体要求。对于基本绘图,Matplotlib 足以满足大多数需求。对于更高级的可视化,Seaborn 和 Plotly 提供了更广泛的功能。Bokeh 对于交互式 web 可视化是理想的选择,而 Pandas Profiling 对于数据分析非常有用。Plotnine 提供了 R 风格的可视化,而 PyViz 提供了针对特定领域的广泛选择。

结论

Python 数据可视化库丰富且功能强大,为数据科学家和分析师提供了各种选项。从基本绘图到高级交互式可视化,这些库使数据探索和展示变得轻而易举。通过选择合适的库并掌握其功能,用户可以创建有效的可视化,以揭示数据的模式和趋势,做出明智的决策。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

数据的舞台:Python 数据可视化的聚光灯

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

聚合函数与数据可视化的结合

聚合函数是一种用于计算数据集合中的统计信息的函数,例如平均值、总和、最大值、最小值等。数据可视化是将数据以图形的形式呈现出来,以便更直观地理解数据的分布和趋势。结合聚合函数和数据可视化可以帮助用户更好地理解数据,并从中获取有用的信息。例如
聚合函数与数据可视化的结合
2024-08-03

Python数据可视化的方法

这篇“Python数据可视化的方法”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Python数据可视化的方法”文章吧。一、数
2023-06-30

python数据可视化matplotlib.pyplot的用法

这篇文章主要介绍“python数据可视化matplotlib.pyplot的用法”,在日常操作中,相信很多人在python数据可视化matplotlib.pyplot的用法问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对
2023-06-20

揭秘 Python 数据可视化的魔法

Python 数据可视化让复杂数据变得直观易懂,本文将揭示 Python 数据可视化的强大功能,并通过演示代码深入探索各种绘图库和技术。
揭秘 Python 数据可视化的魔法
2024-03-07

python数据可视化的操作有哪些

小编给大家分享一下python数据可视化的操作有哪些,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!0. 前言数据处理过程中,可视化可以更直观得感受数据,因此打算结
2023-06-29

驯服数据野兽:Python 数据可视化的终极指南

解锁 Python 数据可视化的强大功能,驾驭纷乱的数据,将其转化为清晰明了的见解,推动您的决策制定。
驯服数据野兽:Python 数据可视化的终极指南
2024-03-07

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录