Python pandas求方差和标准差的方法实例
准备
本文用到的表格内容如下:
先来看一下原始情形:
import pandas as pd
df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df)
result:
分类 货品 实体店销售量 线上销售量 成本 售价
0 水果 苹果 34 234 12 45
1 家电 电视机 56 784 34 156
2 家电 冰箱 78 345 24 785
3 书籍 python从入门到放弃 25 34 13 89
4 水果 葡萄 789 56 7 398
1.求方差
1.1对全表进行操作
1.1.1求取每列的方差
df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.var())
result:
实体店销售量 110164.3
线上销售量 92621.8
成本 118.5
售价 93741.3
dtype: float64
1.1.2 求取每行的方差
df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.var(axis=1))
result:
0 10558.250000
1 126019.666667
2 120818.000000
3 1130.250000
4 131161.666667
dtype: float64
1.2 对单独的一行或者一列进行操作
1.2.1 求取单独某一列的方差
df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df['实体店销售量'].var())
result:
110164.3
1.2.2 求取单独某一行的方差
df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[[0]].var())
result:
实体店销售量 NaN
线上销售量 NaN
成本 NaN
售价 NaN
dtype: float64
1.3 对多行或者多列进行操作
1.3.1 求取多列的方差
df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df[['实体店销售量', "线上销售量"]].var())
result:
实体店销售量 110164.3
线上销售量 92621.8
dtype: float64
1.3.2 求取多行的方差
df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[[0, 1]].var())
result:
实体店销售量 242.0
线上销售量 151250.0
成本 242.0
售价 6160.5
dtype: float64
2 求标准差
2.1对全表进行操作
2.1.1对每一列求标准差
df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.std())
result:
实体店销售量 331.910078
线上销售量 304.338299
成本 10.885771
售价 306.172010
dtype: float64
2.1.2 对每一行求标准差
df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.std(axis=1))
result:
0 102.753345
1 354.992488
2 347.588838
3 33.619191
4 362.162487
dtype: float64
2.2 对单独的一行或者一列进行操作
2.2.1 对某一列求标准差
df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df['实体店销售量'].std())
result:
331.910078183835825
2.2.2 对某一行求标准差
df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[[0]].std())
result:
实体店销售量 NaN
线上销售量 NaN
成本 NaN
售价 NaN
dtype: float64
2.3 对多行或者多列进行操作
2.3.1 对多列求标准差
df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df[['实体店销售量', "线上销售量"]].std())
result:
实体店销售量 331.910078
线上销售量 304.338299
dtype: float64
2.3.2 对多行求标准差
df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[[0, 1]].std())
result:
实体店销售量 15.556349
线上销售量 388.908730
成本 15.556349
售价 78.488853
dtype: float64
总结
到此这篇关于Python pandas求方差和标准差的文章就介绍到这了,更多相关pandas求方差和标准差内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341