我的编程空间,编程开发者的网络收藏夹
学习永远不晚

R语言-进行数据的重新编码(recode)操作

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

R语言-进行数据的重新编码(recode)操作

在分析数据时我们经常会遇到将变量值转换成其他的值的情况(如:将连续变量转成分类变量)这时就需要我们对原有数据进行重新编码。本文将介绍R软件中常用的三种重编吗方法:

1、使用逻辑判断式编码。

2、使用cut函数编码。

3、使用car程序包的recode函数。

(一)使用逻辑判断式

(1)现假设我们需要将下面的连续型变量x按照10与20分成三个组,新的分组名称为1、2、3:


> x2=1*(x<=10)+2*(x>10&x<=20)+3*(x>20)
> x2
 [1] 1 2 3 2 3 3 3 3 1 3 3 2 1 2 3 3 3 2 3 3

将上述变量的数字编码改为字符编码


> labels=c("A","B","C")
> x3=labels[x2]
> x3
 [1] "A" "B" "C" "B" "C" "C" "C" "C" "A" "C" "C" "B" "A" "B" "C" "C" "C" "B" "C" "C"

假设如下将以下范例月收入数据分成“低收入”,“中等收入”,“高收入”三个组:


> income<-c(130065,82961,133076,123028,108945,173466,17477)
> income
[1] 130065  82961 133076 123028 108945 173466  17477
> newcodes=c("低收入","中等收入","高收入")
Error: unexpected input in "newcodes=c("低收入"?
> newcodes=c("低收入","中等收入","高收入")
> index=1*(income<20000)+2*(income>=20000&income<=60000)+3*(income>60000)
> income=newcodes[index]
> income
[1] "高收入" "高收入" "高收入" "高收入" "高收入" "高收入" "低收入"

(2)使用ifelse函数

基本语法:ifelse(逻辑判断式,TRUE-表达式,FALSE-表达式)

编码成两个分组:


> x
 [1]  4 12 50 18 50 22 23 46  8 46 36 18 10 14 35 48 23 17 29 30
> (x2=ifelse(x<=30,1,2))
 [1] 1 1 2 1 2 1 1 2 1 2 2 1 1 1 2 2 1 1 1 1
> (x3=ifelse(x<=30,"A","B"))
 [1] "A" "A" "B" "A" "B" "A" "A" "B" "A" "B" "B" "A" "A" "A" "B" "B" "A" "A" "A" "A"

搭配%int%运算符,将"A",“C"重编码为"Group1”,“B”,“D"重编码为"Group2”:


> y
 [1] "B" "A" "C" "C" "B" "A" "D" "B" "C" "D"
 > (y2=ifelse(y %in% c("A","C"),"Group1","Group2"))
 [1] "Group2" "Group1" "Group1" "Group1" "Group2" "Group1" "Group2" "Group2" "Group1" "Group2"

当编码成三个或者三个以上的组时需要多次使用ifelse 函数:

将x按照10与20两个分割点分成1、2、3三组:


> x
 [1]  4 12 50 18 50 22 23 46  8 46 36 18 10 14 35 48 23 17 29 30
> (x2=ifelse(x<=10,1,ifelse(x<20,2,3)))
 [1] 1 2 3 2 3 3 3 3 1 3 3 2 1 2 3 3 3 2 3 3

将“A”“E”编码为1,"C"编码为2,“B”“D”编码为3:


> y
 [1] "B" "A" "C" "C" "B" "A" "D" "B" "C" "D"
> y2=ifelse(y%in%c("A","E"),1,ifelse(y=="C",2,3))
> y2
 [1] 3 1 2 2 3 1 3 3 2 3

(二)使用cut 函数

cut函数可以根据我们设置的分割点(breaks)将数据重编码,将一个数值向量变量转换为分组形态的factors变量。

基本语法:


cut(x,breaks,labels,include.lowest=F,right=T)

其中

x为数值向量

breaks为分割点信息。若breaks为向量,则根据向量中的数字进行分割。若breaks为大于1正整数k,则将

x分成均等的k组。

labels为分割后各组的名称,若为null,则输出数字向量,否则输出factor变量。

include.lowest=FALSE表示分割时不含各区间端点的最小值。

right=T表示各区间为左端open,右端closed的区间

使用cut函数将x向量依照0、10、20,max(x)分成3组


> x
 [1]  4 12 50 18 50 22 23 46  8 46 36 18 10 14 35 48 23 17 29 30
> x2=cut(x,breaks = c(0,10,20,max(x)),labels = c(1,2,3))
> x2
 [1] 1 2 3 2 3 3 3 3 1 3 3 2 1 2 3 3 3 2 3 3
Levels: 1 2 3
> as.vector(x2)
 [1] "1" "2" "3" "2" "3" "3" "3" "3" "1" "3" "3" "2" "1" "2" "3" "3" "3" "2" "3" "3"

若没有给定labels参数,cut函数自动按照分割点生成分组名称:


x3=cut(x,breaks = c(0,10,20,max(x)))
> x3
 [1] (0,10]  (10,20] (20,50] (10,20] (20,50] (20,50] (20,50] (20,50] (0,10]  (20,50] (20,50] (10,20] (0,10] 
[14] (10,20] (20,50] (20,50] (20,50] (10,20] (20,50] (20,50]
Levels: (0,10] (10,20] (20,50]

现在我们模拟产生10个N(60,10)的随机成绩,并且使用cut函数的breaks选项将其分成5个组:


> score=round(rnorm(10,60,10))
> score
 [1] 39 65 60 69 58 69 70 62 61 75
> score.cut=cut(score,breaks=5)
> score.cut
 [1] (39,46.2]   (60.6,67.8] (53.4,60.6] (67.8,75]   (53.4,60.6] (67.8,75]   (67.8,75]   (60.6,67.8]
 [9] (60.6,67.8] (67.8,75]  
Levels: (39,46.2] (46.2,53.4] (53.4,60.6] (60.6,67.8] (67.8,75]

由以上结果可知,cut()函数默认输出一个factor变量,并且自动将五个分组命名为“ (39,46.2]”…“ (67.8,75]”。如果cut()的选项labels=FALSE,则输出的结果是数字编码的一半向量变量:


> score.cut=cut(score,breaks=5,labels = F)
> score.cut
 [1] 1 4 3 5 3 5 5 4 4 5
> score.cut=as.factor(score.cut)
> score.cut
 [1] 1 4 3 5 3 5 5 4 4 5
Levels: 1 3 4 5

(三)使用car程序包中的recode函数

car程序包的recode函数可以将数值或者字符向量、factor变量重新编码。

基本语法:recode(x,recodes,as.factor.result,levels)

其中:

x为数值向量,字符向量或者factor 变量。

recode为设定重新编码规则的字符串。

as.factor.result为是否输出factor变量。若是则为TRUE,不是为FALSE。

levels为排序向量。指定新的编码分组的顺序(默认是按照分组名称排序)。

recodes参数编码规则的写法

recodes参数的值是一个字符串,字符串里面是以分号分隔的编码规则:

recodes=“规则1;规则2…”

每一个编码规则的格式为旧码列表=新码,“旧码列表”部分可用lo代表旧码的最小值(low)、hi代表旧码的最大值(high)撰写规则如下:

(1)旧码=新码 旧码只有单一数值。例如:“0=NA”表示将0改为NA。

(2)旧码向量=新码 多个旧码改为一个新码。例如:“c(7,8,9)=‘high'”,将7,8,9改为high。

(3)start:end=新码 有序数字改码。例如:“lo:19=‘C'”。

(4)else=新码 所有其他情况。例如:“else=NA”。

程序范例:


> library(carData)
> library(car)
> x
[1] 1 2 3 1 2 3 1 2 3
> recode(x,"c(1,2)='A';else='B'")
[1] "A" "A" "B" "A" "A" "B" "A" "A" "B"

将成绩0~40分之间的分数编码为1,41-60分之间为2,61-80分为3,81以上为4,其他情况为NA


> score
 [1] 75 70 66 65 55 69 75 69 82 83
> recode(score,"lo:40=1;41:60=2;61:80=3;81:hi=4;else=NA")
 [1] 3 3 3 3 2 3 3 3 4 4

上例改用‘A'‘B'‘C''‘D'


> recode(score,"lo:40='A';41:60='B';61:80='C';81:hi='D';else=NA")
 [1] "C" "C" "C" "C" "B" "C" "C" "C" "D" "D"

补充:R语言字符串处理时的编码的一些问题问题(Windows环境)

R在windows中文系统时默认使用GB编码字符,而许多函数是只支持UTF-8的,例如

不作任何处理读入数据时,数据会以系统默认编码读入,tolower()函数工作失败

如果有干预的读入数据,即指定字符串的编码,则不会出错

数据库读写中文出现乱码的原理也是相似的。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。如有错误或未考虑完全的地方,望不吝赐教。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

R语言-进行数据的重新编码(recode)操作

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

怎么在R语言中对数据进行重新编码

怎么在R语言中对数据进行重新编码?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。(一)使用逻辑判断式(1)现假设我们需要将下面的连续型变量x按照10与20分成三个
2023-06-14

r语言中怎么进行数据采样和抽样操作

在R语言中,可以使用以下函数来进行数据采样和抽样操作:从数据集中随机抽取样本:sample(data, size, replace = FALSE)其中,data为要抽样的数据集,size为抽样的样本大小,replace为是否允许重复抽样(
r语言中怎么进行数据采样和抽样操作
2024-03-06

R语言怎么用均值替换、回归插补及多重插补进行插补的操作

小编给大家分享一下R语言怎么用均值替换、回归插补及多重插补进行插补的操作,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!用均值替换、回归插补及多重插补进行插补# 设
2023-06-14

JSP对浏览器发送来的数据进行重新编码的两种方式

使用JSP操作中文时,经常会出现一些乱码问题。这里,我们只谈一下对浏览器发送来的数据进行重新编码时的编码方式。众所周知,要对浏览器发送来的数据进行重新编码,只需要一个语句就可以了,很简单
2022-11-15

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录