Python怎么利用networkx画图绘制Les Misérables人物关系
这篇文章主要介绍“Python怎么利用networkx画图绘制Les Misérables人物关系”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python怎么利用networkx画图绘制Les Misérables人物关系”文章能帮助大家解决问题。
数据集介绍
《悲惨世界》中的人物关系图,图中共77个节点、254条边。
数据集截图:
打开README文件:
Les Misérables network, part of the Koblenz Network Collection===========================================================================This directory contains the TSV and related files of the moreno_lesmis network: This undirected network contains co-occurances of characters in Victor Hugo's novel 'Les Misérables'. A node represents a character and an edge between two nodes shows that these two characters appeared in the same chapter of the the book. The weight of each link indicates how often such a co-appearance occured.More information about the network is provided here: http://konect.cc/networks/moreno_lesmisFiles: meta.moreno_lesmis -- Metadata about the network out.moreno_lesmis -- The adjacency matrix of the network in whitespace-separated values format, with one edge per line The meaning of the columns in out.moreno_lesmis are: First column: ID of from node Second column: ID of to node Third column (if present): weight or multiplicity of edge Fourth column (if present): timestamp of edges Unix time Third column: edge weightUse the following References for citation:@MISC{konect:2017:moreno_lesmis, title = {Les Misérables network dataset -- {KONECT}}, month = oct, year = {2017}, url = {http://konect.cc/networks/moreno_lesmis}}@book{konect:knuth2993,title = {The {Stanford} {GraphBase}: A Platform for Combinatorial Computing},author = {Knuth, Donald Ervin},volume = {37},year = {1993},publisher = {Addison-Wesley Reading},}@book{konect:knuth2993,title = {The {Stanford} {GraphBase}: A Platform for Combinatorial Computing},author = {Knuth, Donald Ervin},volume = {37},year = {1993},publisher = {Addison-Wesley Reading},}@inproceedings{konect,title = {{KONECT} -- {The} {Koblenz} {Network} {Collection}},author = {Jérôme Kunegis},year = {2013},booktitle = {Proc. Int. Conf. on World Wide Web Companion},pages = {1343--1350},url = {http://dl.acm.org/citation.cfm?id=2488173},url_presentation = {https://www.slideshare.net/kunegis/presentationwow},url_web = {http://konect.cc/},url_citations = {https://scholar.google.com/scholar?cites=7174338004474749050},}@inproceedings{konect,title = {{KONECT} -- {The} {Koblenz} {Network} {Collection}},author = {Jérôme Kunegis},year = {2013},booktitle = {Proc. Int. Conf. on World Wide Web Companion},pages = {1343--1350},url = {http://dl.acm.org/citation.cfm?id=2488173},url_presentation = {https://www.slideshare.net/kunegis/presentationwow},url_web = {http://konect.cc/},url_citations = {https://scholar.google.com/scholar?cites=7174338004474749050},}
从中可以得知:该图是一个无向图,节点表示《悲惨世界》中的人物,两个节点之间的边表示这两个人物出现在书的同一章,边的权重表示两个人物(节点)出现在同一章中的频率。
真正的数据在out.moreno_lesmis_lesmis中,打开并另存为csv文件:
数据处理
networkx中对无向图的初始化代码为:
g = nx.Graph()g.add_nodes_from([i for i in range(1, 78)])g.add_edges_from([(1, 2, {'weight': 1})])
节点的初始化很容易解决,我们主要解决边的初始化:先将dataframe转为列表,然后将其中每个元素转为元组。
df = pd.read_csv('out.csv')res = df.values.tolist()for i in range(len(res)): res[i][2] = dict({'weight': res[i][2]})res = [tuple(x) for x in res]print(res)
res输出如下(部分):
[(1, 2, {'weight': 1}), (2, 3, {'weight': 8}), (2, 4, {'weight': 10}), (2, 5, {'weight': 1}), (2, 6, {'weight': 1}), (2, 7, {'weight': 1}), (2, 8, {'weight': 1})...]
因此图的初始化代码为:
g = nx.Graph()g.add_nodes_from([i for i in range(1, 78)])g.add_edges_from(res)
画图
nx.draw(g)plt.show()
networkx自带的数据集
忙活了半天发现networkx有自带的数据集,其中就有悲惨世界的人物关系图:
g = nx.les_miserables_graph()nx.draw(g, with_labels=True)plt.show()
完整代码
# -*- coding: utf-8 -*-import networkx as nximport matplotlib.pyplot as pltimport pandas as pd# 77 254df = pd.read_csv('out.csv')res = df.values.tolist()for i in range(len(res)): res[i][2] = dict({'weight': res[i][2]})res = [tuple(x) for x in res]print(res)# 初始化图g = nx.Graph()g.add_nodes_from([i for i in range(1, 78)])g.add_edges_from(res)g = nx.les_miserables_graph()nx.draw(g, with_labels=True)plt.show()
关于“Python怎么利用networkx画图绘制Les Misérables人物关系”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注编程网行业资讯频道,小编每天都会为大家更新不同的知识点。
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341