我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python Hashmap/Dicti

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python Hashmap/Dicti

Python

来自:http://www.dotnetperls.com/dictionary-python


Built-in Dictionary List Set Tuple 2D Array Bytes Class Console Convert Datetime Duplicates Error File Find If Lambda Len Lower Map Math Namedtuple None Random Re Slice Sort Split String Strip Sub Substring TypeWhile

Dictionary. A dictionary optimizes element lookups. It associates keys to values. Each key must have a value. Dictionaries are used in many programs.
With square brackets, we assign and access a value at a key. With get() we can specify a default result. Dictionaries are fast. We create, mutate and test them.
Get example. There are many ways to get values. We can use the "[" and "]" characters. We access a value directly this way. But this syntax causes a KeyError if the key is not found.

Instead:We can use the get() method with one or two arguments. This does not cause any annoying errors. It returns None.

Argument 1:The first argument to get() is the key you are testing. This argument is required.

Argument 2:The second, optional argument to get() is the default value. This is returned if the key is not found.

Based on: Python 3

Python program that gets values

plants = {}

# Add three key-value tuples to the dictionary.
plants["radish"] = 2
plants["squash"] = 4
plants["carrot"] = 7

# Get syntax 1.
print(plants["radish"])

# Get syntax 2.
print(plants.get("tuna"))
print(plants.get("tuna", "no tuna found"))

Output

2
None
no tuna found
Get, none. In Python "None" is a special value like null or nil. I like None. It is my friend. It means no value. Get() returns None if no value is found in a dictionary.None

Note:It is valid to assign a key to None. So get() can return None, but there is actually a None value in the dictionary.


Key error. Errors in programs are not there just to torment you. They indicate problems with a program and help it work better. A KeyError occurs on an invalid access.KeyError
Python program that causes KeyError

lookup = {"cat": 1, "dog": 2}

# The dictionary has no fish key!
print(lookup["fish"])

Output

Traceback (most recent call last):
  File "C:\programs\file.py", line 5, in <module>
    print(lookup["fish"])
KeyError: 'fish'
In-keyword. A dictionary may (or may not) contain a specific key. Often we need to test for existence. One way to do so is with the in-keyword.In

True:This keyword returns 1 (meaning true) if the key exists as part of a key-value tuple in the dictionary.

False:If the key does not exist, the in-keyword returns 0, indicating false. This is helpful in if-statements.

Python program that uses in

animals = {}
animals["monkey"] = 1
animals["tuna"] = 2
animals["giraffe"] = 4

# Use in.
if "tuna" in animals:
    print("Has tuna")
else:
    print("No tuna")

# Use in on nonexistent key.
if "elephant" in animals:
    print("Has elephant")
else:
    print("No elephant")

Output

Has tuna
No elephant
Len built-in. This returns the number of key-value tuples in a dictionary. The data types of the keys and values do not matter. Len also works on lists and strings.

Caution:The length returned for a dictionary does not separately consider keys and values. Each pair adds one to the length.

Python program that uses len on dictionary

animals = {"parrot": 2, "fish": 6}

# Use len built-in on animals.
print("Length:", len(animals))

Output

Length: 2
Len notes. Let us review. Len() can be used on other data types, not just dictionaries. It acts upon a list, returning the number of elements within. It also handles tuples.Len
Keys, values. A dictionary contains keys. It contains values. And with the keys() and values() methods, we can store these elements in lists.

Next:A dictionary of three key-value pairs is created. This dictionary could be used to store hit counts on a website's pages.

Views:We introduce two variables, named keys and values. These are not lists—but we can convert them to lists.

Convert
Python program that uses keys

hits = {"home": 125, "sitemap": 27, "about": 43}
keys = hits.keys()
values = hits.values()

print("Keys:")
print(keys)
print(len(keys))

print("Values:")
print(values)
print(len(values))

Output

Keys:
dict_keys(['home', 'about', 'sitemap'])
3
Values:
dict_values([125, 43, 27])
3
Keys, values ordering. Elements returned by keys() and values() are not ordered. In the above output, the keys-view is not alphabetically sorted. Consider a sorted view (keep reading).
Sorted keys. In a dictionary keys are not sorted in any way. They are unordered. Their order reflects the internals of the hashing algorithm's buckets.

But:Sometimes we need to sort keys. We invoke another method, sorted(), on the keys. This creates a sorted view.

Python program that sorts keys in dictionary

# Same as previous program.
hits = {"home": 124, "sitemap": 26, "about": 32}

# Sort the keys from the dictionary.
keys = sorted(hits.keys())

print(keys)

Output

['about', 'home', 'sitemap']
Items. With this method we receive a list of two-element tuples. Each tuple contains, as its first element, the key. Its second element is the value.

Tip:With tuples, we can address the first element with an index of 0. The second element has an index of 1.

Program:The code uses a for-loop on the items() list. It uses the print() method with two arguments.

Python that uses items method

rents = {"apartment": 1000, "house": 1300}

# Convert to list of tuples.
rentItems = rents.items()

# Loop and display tuple items.
for rentItem in rentItems:
    print("Place:", rentItem[0])
    print("Cost:", rentItem[1])
    print("")

Output

Place: house
Cost: 1300

Place: apartment
Cost: 1000
Items, assign. We cannot assign elements in the tuples. If you try to assign rentItem[0] or rentItem[1], you will get an error. This is the error message.
Python error:

TypeError: 'tuple' object does not support item assignment
Items, unpack. The items() list can be used in another for-loop syntax. We can unpack the two parts of each tuple in items() directly in the for-loop.

Here:In this example, we use the identifier "k" for the key, and "v" for the value.

Python that unpacks items

# Create a dictionary.
data = {"a": 1, "b": 2, "c": 3}

# Loop over items and unpack each item.
for k, v in data.items():
    # Display key and value.
    print(k, v)

Output

a 1
c 3
b 2
For-loop. A dictionary can be directly enumerated with a for-loop. This accesses only the keys in the dictionary. To get a value, we will need to look up the value.

Items:We can call the items() method to get a list of tuples. No extra hash lookups will be needed to access values.

Here:The plant variable, in the for-loop, is the key. The value is not available—we would need plants.get(plant) to access it.

Python that loops over dictionary

plants = {"radish": 2, "squash": 4, "carrot": 7}

# Loop over dictionary directly.
# ... This only accesses keys.
for plant in plants:
    print(plant)

Output

radish
carrot
squash
Del built-in. How can we remove data? We apply the del method to a dictionary entry. In this program, we initialize a dictionary with three key-value tuples.Del

Then:We remove the tuple with key "windows". When we display the dictionary, it now contains only two key-value pairs.

Python that uses del

systems = {"mac": 1, "windows": 5, "linux": 1}

# Remove key-value at "windows" key.
del systems["windows"]

# Display dictionary.
print(systems)

Output

{'mac': 1, 'linux': 1}
Del, alternative. An alternative to using del on a dictionary is to change the key's value to a special value. This is a null object refactoring strategy.
Update. With this method we change one dictionary to have new values from a second dictionary. Update() also modifies existing values. Here we create two dictionaries.

Pets1, pets2:The pets2 dictionary has a different value for the dog key—it has the value "animal", not "canine".

Also:The pets2 dictionary contains a new key-value pair. In this pair the key is "parakeet" and the value is "bird".

Result:Existing values are replaced with new values that match. New values are added if no matches exist.

Python that uses update

# First dictionary.
pets1 = {"cat": "feline", "dog": "canine"}

# Second dictionary.
pets2 = {"dog": "animal", "parakeet": "bird"}

# Update first dictionary with second.
pets1.update(pets2)

# Display both dictionaries.
print(pets1)
print(pets2)

Output

{'parakeet': 'bird', 'dog': 'animal', 'cat': 'feline'}
{'dog': 'animal', 'parakeet': 'bird'}
Copy. This method performs a shallow copy of an entire dictionary. Every key-value tuple in the dictionary is copied. This is not just a new variable reference.

Here:We create a copy of the original dictionary. We then modify values within the copy. The original is not affected.

Python that uses copy

original = {"box": 1, "cat": 2, "apple": 5}

# Create copy of dictionary.
modified = original.copy()

# Change copy only.
modified["cat"] = 200
modified["apple"] = 9

# Original is still the same.
print(original)
print(modified)

Output

{'box': 1, 'apple': 5, 'cat': 2}
{'box': 1, 'apple': 9, 'cat': 200}
Fromkeys. This method receives a sequence of keys, such as a list. It creates a dictionary with each of those keys. We can specify a value as the second argument.

Values:If you specify the second argument to fromdict(), each key has that value in the newly-created dictionary.

Python that uses fromkeys

# A list of keys.
keys = ["bird", "plant", "fish"]

# Create dictionary from keys.
d = dict.fromkeys(keys, 5)

# Display.
print(d)

Output

{'plant': 5, 'bird': 5, 'fish': 5}
Dict. With this built-in function, we can construct a dictionary from a list of tuples. The tuples are pairs. They each have two elements, a key and a value.

Tip:This is a possible way to load a dictionary from disk. We can store (serialize) it as a list of pairs.

Python that uses dict built-in

# Create list of tuple pairs.
# ... These are key-value pairs.
pairs = [("cat", "meow"), ("dog", "bark"), ("bird", "chirp")]

# Convert list to dictionary.
lookup = dict(pairs)

# Test the dictionary.
print(lookup.get("dog"))
print(len(lookup))

Output

bark
3
Memoize. One classic optimization is called memoization. And this can be implemented easily with a dictionary. In memoization, a function (def) computes its result.Memoize

And:Once the computation is done, it stores its result in a cache. In the cache, the argument is the key. And the result is the value.


Memoization, continued. When a memoized function is called, it first checks this cache to see if it has been, with this argument, run before.

And:If it has, it returns its cached—memoized—return value. No further computations need be done.

Note:If a function is only called once with the argument, memoization has no benefit. And with many arguments, it usually works poorly.


Get performance. I compared a loop that uses get() with one that uses both the in-keyword and a second look up. Version 2, with the "in" operator, was faster.

Version 1:This version uses a second argument to get(). It tests that against the result and then proceeds if the value was found.

Version 2:This version uses "in" and then a lookup. Twice as many lookups occur. But fewer statements are executed.

Python that benchmarks get

import time

# Input dictionary.
systems = {"mac": 1, "windows": 5, "linux": 1}

# Time 1.
print(time.time())

# Get version.
i = 0
v = 0
x = 0
while i < 10000000:
    x = systems.get("windows", -1)
    if x != -1:
        v = x
    i += 1

# Time 2.
print(time.time())

# In version.
i = 0
v = 0
while i < 10000000:
    if "windows" in systems:
        v = systems["windows"]
    i += 1

# Time 3.
print(time.time())

Output

1345819697.257
1345819701.155 (get = 3.90 s)
1345819703.453 (in  = 2.30 s)
String key performance. In another test, I compared string keys. I found that long string keys take longer to look up than short ones. Shorter keys are faster.Dictionary String Key
Performance, loop. A dictionary can be looped over in different ways. In this benchmark we test two approaches. We access the key and value in each iteration.

Version 1:This version loops over the keys of the dictionary with a while-loop. It then does an extra lookup to get the value.

Version 2:This version instead uses a list of tuples containing the keys and values. It actually does not touch the original dictionary.

But:Version 2 has the same effect—we access the keys and values. The cost of calling items() initially is not counted here.

Python that benchmarks loops

import time

data = {"michael": 1, "james": 1, "mary": 2, "dale": 5}
items = data.items()

print(time.time())

# Version 1: get.
i = 0
while i < 10000000:
    v = 0
    for key in data:
        v = data[key]
    i += 1

print(time.time())

# Version 2: items.
i = 0
while i < 10000000:
    v = 0
    for tuple in items:
        v = tuple[1]
    i += 1

print(time.time())

Output

1345602749.41
1345602764.29 (version 1 = 14.88 s)
1345602777.68 (version 2 = 13.39 s)
Benchmark, loop results. We see above that looping over a list of tuples is faster than directly looping over a dictionary. This makes sense. With the list, no lookups are done.
Frequencies. A dictionary can be used to count frequencies. Here we introduce a string that has some repeated letters. We use get() on a dictionary to start at 0 for nonexistent values.

So:The first time a letter is found, its frequency is set to 0 + 1, then 1 + 1. Get() has a default return.

Python that counts letter frequencies

# The first three letters are repeated.
letters = "abcabcdefghi"

frequencies = {}
for c in letters:
    # If no key exists, get returns the value 0.
    # ... We then add one to increase the frequency.
    # ... So we start at 1 and progress to 2 and then 3.
    frequencies[c] = frequencies.get(c, 0) + 1

for f in frequencies.items():
    # Print the tuple pair.
    print(f)

Output

('a', 2)
('c', 2)
('b', 2)
('e', 1)
('d', 1)
('g', 1)
('f', 1)
('i', 1)
('h', 1)
A summary. A dictionary is usually implemented as a hash table. Here a special hashing algorithm translates a key (often a string) into an integer.
For a speedup, this integer is used to locate the data. This reduces search time. For programs with performance trouble, using a dictionary is often the initial path to optimization.

Python Hashmap/Dicti

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python Hashmap/Dicti

Python来自:http://www.dotnetperls.com/dictionary-pythonBuilt-in Dictionary List Set Tuple 2D Array Bytes Class Console Con
2023-01-31

Python hashmap

标签: pythonhashmap2014-10-15 18:42 533人阅读 评论(0) 收藏 举报 分类: Python(40) 版权声明:本文为博主原创文章,未经博主允许不得转载。[python] view plain copy c
2023-01-31

python中HashMap的一个实现

class LinearMap(object): def __init__(self): self.items = [] def add(self, k, v): self.items.append(
2023-01-31

python实现一个简易hashmap

python实现一个简易hashmap,不严谨、有问题之处请多多指出。。近日把数据结构翻出来看看,发现自己这方面的知识很欠缺,算是自己的记录,也希望给正在学习数据结构的老铁们分享,共同学习。。。简单说明原理 python语言中的dict底层
2023-01-31
2023-09-22

Java HashMap透析

HashMap 是数组和链表组合组成的复杂结构,哈希值决定了键值在数组的位置,当哈希值相同时则以链表形式存储,当链表长度到达设定的阈值则会对其进行树化,这样做是为了保证数据安全和数据相关操作的效率HashMap 性能表现取决于哈希码的有效性,所以 hashCo
Java HashMap透析
2021-08-10

HashMap实例分析

这篇“HashMap实例分析”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“HashMap实例分析”文章吧。场景扮演面试官:
2023-06-27

Java中HashMap是什么

这篇文章主要介绍Java中HashMap是什么,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!一、HashMap的结构图示本文主要说的是jdk1.8版本中的实现。而1.8中HashMap是数组+链表+红黑树实现的,大概
2023-06-15

怎么理解HashMap

这篇文章主要讲解了“怎么理解HashMap”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么理解HashMap”吧!1、HashMap添加一个键值对的过程是怎么样的?这是网上找的一张流程图,
2023-06-16

HashMap源码怎么分析

这篇文章主要介绍“HashMap源码怎么分析”,在日常操作中,相信很多人在HashMap源码怎么分析问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”HashMap源码怎么分析”的疑惑有所帮助!接下来,请跟着小编
2023-06-05

Java中HashMap有什么用

小编给大家分享一下Java中HashMap有什么用,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!一、HashMap的概述HashMap可以说是Java中最常用的集
2023-05-30

hashmap底层实现原理

hashmap底层实现原理是:HashMap是基于哈希表的Map接口的非同步实现。HashMap是一个存储key-value键值对的集合,每一个键值对也叫做entry,这些entry分散存储在一个数组中,这个数组也是HashMap的主干,这个数组每个元素的初始值都是null。HashMa是Java中最常用的集合类框架,也是Java语言中非常典型的数据结构,同时也是我们需要掌握的数据结构,更重要的是进大厂面试必问之一。
hashmap底层实现原理
2023-10-29

HashMap底层原理分析

小编给大家分享一下HashMap底层原理分析,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!众所周知,HashMap是一个用于存储Key-Value键值对的集合,每一个键值对也叫做Entry。这些个键值对(Entry)分散存
2023-06-27

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录