Python怎么实现遗传算法
短信预约 -IT技能 免费直播动态提醒
这篇文章给大家分享的是有关Python怎么实现遗传算法的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。
(一)问题
遗传算法求解正方形拼图游戏
(二)代码
#!/usr/bin/env python# -*- coding: utf-8 -*- from PIL import Image, ImageDrawimport osimport gcimport random as rimport minpy.numpy as np class Color(object): ''' 定义颜色的类,这个类包含r,g,b,a表示颜色属性 ''' def __init__(self): self.r = r.randint(0, 255) self.g = r.randint(0, 255) self.b = r.randint(0, 255) self.a = r.randint(95, 115) def mutate_or_not(rate): ''' 生成随机数,判断是否需要变异 ''' return True if rate > r.random() else False class Triangle(object): ''' 定义三角形的类 属性: ax,ay,bx,by,cx,cy:表示每个三角形三个顶点的坐标 color : 表示三角形的颜色 img_t : 三角形绘制成的图,用于合成图片 方法: mutate_from(self, parent): 从父代三角形变异 draw_it(self, size=(256, 256)): 绘制三角形 ''' max_mutate_rate = 0.08 mid_mutate_rate = 0.3 min_mutate_rate = 0.8 def __init__(self, size=(255, 255)): t = r.randint(0, size[0]) self.ax = r.randint(0, size[0]) self.ay = r.randint(0, size[1]) self.bx = self.ax+t self.by = self.ay self.cx = self.ax+t self.cy = self.ay-t self.dx = self.ax self.dy = self.ay-t self.color = Color() self.img_t = None def mutate_from(self, parent): if mutate_or_not(self.max_mutate_rate): t = r.randint(0, 255) self.ax = r.randint(0, 255) self.ay = r.randint(0, 255) self.bx = self.ax + t self.by = self.ay self.dx = self.ax self.dy = self.ay - t self.cx = self.ax + t self.cy = self.ay - t if mutate_or_not(self.mid_mutate_rate): t = min(max(0, parent.ax + r.randint(-15, 15)), 255) self.ax = min(max(0, parent.ax + r.randint(-15, 15)), 255) self.ay = min(max(0, parent.ay + r.randint(-15, 15)), 255) self.bx = self.ax + t self.by = self.ay self.dx = self.ax self.dy = self.ay - t self.cx = self.ax + t self.cy = self.ay - t if mutate_or_not(self.min_mutate_rate): t = min(max(0, parent.ax + r.randint(-3, 3)), 255) self.ax = min(max(0, parent.ax + r.randint(-3, 3)), 255) self.ay = min(max(0, parent.ay + r.randint(-3, 3)), 255) self.bx = self.ax + t self.by = self.ay self.dx = self.ax self.dy = self.ay - t self.cx = self.ax + t self.cy = self.ay - t # color if mutate_or_not(self.max_mutate_rate): self.color.r = r.randint(0, 255) if mutate_or_not(self.mid_mutate_rate): self.color.r = min(max(0, parent.color.r + r.randint(-30, 30)), 255) if mutate_or_not(self.min_mutate_rate): self.color.r = min(max(0, parent.color.r + r.randint(-10, 10)), 255) if mutate_or_not(self.max_mutate_rate): self.color.g = r.randint(0, 255) if mutate_or_not(self.mid_mutate_rate): self.color.g = min(max(0, parent.color.g + r.randint(-30, 30)), 255) if mutate_or_not(self.min_mutate_rate): self.color.g = min(max(0, parent.color.g + r.randint(-10, 10)), 255) if mutate_or_not(self.max_mutate_rate): self.color.b = r.randint(0, 255) if mutate_or_not(self.mid_mutate_rate): self.color.b = min(max(0, parent.color.b + r.randint(-30, 30)), 255) if mutate_or_not(self.min_mutate_rate): self.color.b = min(max(0, parent.color.b + r.randint(-10, 10)), 255) # alpha if mutate_or_not(self.mid_mutate_rate): self.color.a = r.randint(95, 115) # if mutate_or_not(self.mid_mutate_rate): # self.color.a = min(max(0, parent.color.a + r.randint(-30, 30)), 255) # if mutate_or_not(self.min_mutate_rate): # self.color.a = min(max(0, parent.color.a + r.randint(-10, 10)), 255) def draw_it(self, size=(256, 256)): self.img_t = Image.new('RGBA', size) draw = ImageDraw.Draw(self.img_t) draw.polygon([(self.ax, self.ay), (self.bx, self.by), (self.cx, self.cy), (self.dx, self.dy)], fill=(self.color.r, self.color.g, self.color.b, self.color.a)) return self.img_t class Canvas(object): ''' 定义每一张图片的类 属性: mutate_rate : 变异概率 size : 图片大小 target_pixels: 目标图片像素值 方法: add_triangles(self, num=1) : 在图片类中生成num个三角形 mutate_from_parent(self, parent): 从父代图片对象进行变异 calc_match_rate(self): 计算环境适应度 draw_it(self, i): 保存图片 ''' mutate_rate = 0.01 size = (256, 256) target_pixels = [] def __init__(self): self.triangles = [] self.match_rate = 0 self.img = None def add_triangles(self, num=1): for i in range(0, num): triangle = Triangle() self.triangles.append(triangle) def mutate_from_parent(self, parent): flag = False for triangle in parent.triangles: t = triangle if mutate_or_not(self.mutate_rate): flag = True a = Triangle() a.mutate_from(t) self.triangles.append(a) continue self.triangles.append(t) if not flag: self.triangles.pop() t = parent.triangles[r.randint(0, len(parent.triangles) - 1)] a = Triangle() a.mutate_from(t) self.triangles.append(a) def calc_match_rate(self): if self.match_rate > 0: return self.match_rate self.match_rate = 0 self.img = Image.new('RGBA', self.size) draw = ImageDraw.Draw(self.img) draw.polygon([(0, 0), (0, 255), (255, 255), (255, 0)], fill=(255, 255, 255, 255)) for triangle in self.triangles: self.img = Image.alpha_composite(self.img, triangle.img_t or triangle.draw_it(self.size)) # 与下方代码功能相同,此版本便于理解但效率低 # pixels = [self.img.getpixel((x, y)) for x in range(0, self.size[0], 2) for y in range(0, self.size[1], 2)] # for i in range(0, min(len(pixels), len(self.target_pixels))): # delta_red = pixels[i][0] - self.target_pixels[i][0] # delta_green = pixels[i][1] - self.target_pixels[i][1] # delta_blue = pixels[i][2] - self.target_pixels[i][2] # self.match_rate += delta_red * delta_red + \ # delta_green * delta_green + \ # delta_blue * delta_blue arrs = [np.array(x) for x in list(self.img.split())] # 分解为RGBA四通道 for i in range(3): # 对RGB通道三个矩阵分别与目标图片相应通道作差取平方加和评估相似度 self.match_rate += np.sum(np.square(arrs[i]-self.target_pixels[i]))[0] def draw_it(self, i): #self.img.save(os.path.join(PATH, "%s_%d_%d_%d.png" % (PREFIX, len(self.triangles), i, self.match_rate))) self.img.save(os.path.join(PATH, "%d.png" % (i))) def main(): global LOOP, PREFIX, PATH, TARGET, TRIANGLE_NUM # 声明全局变量 img = Image.open(TARGET).resize((256, 256)).convert('RGBA') size = (256, 256) Canvas.target_pixels = [np.array(x) for x in list(img.split())] # 生成一系列的图片作为父本,选择其中最好的一个进行遗传 parentList = [] for i in range(20): print('正在生成第%d个初代个体' % (i)) parentList.append(Canvas()) parentList[i].add_triangles(TRIANGLE_NUM) parentList[i].calc_match_rate() parent = sorted(parentList, key=lambda x: x.match_rate)[0] del parentList gc.collect() # 进入遗传算法的循环 i = 0 while i < 30000: childList = [] # 每一代从父代中变异出10个个体 for j in range(10): childList.append(Canvas()) childList[j].mutate_from_parent(parent) childList[j].calc_match_rate() child = sorted(childList, key=lambda x: x.match_rate)[0] # 选择其中适应度最好的一个个体 del childList gc.collect() parent.calc_match_rate() if i % LOOP == 0: print ('%10d parent rate %11d \t child1 rate %11d' % (i, parent.match_rate, child.match_rate)) parent = parent if parent.match_rate < child.match_rate else child # 如果子代比父代更适应环境,那么子代成为新的父代 # 否则保持原样 child = None if i % LOOP == 0: # 每隔LOOP代保存一次图片 parent.draw_it(i) #print(parent.match_rate) #print ('%10d parent rate %11d \t child1 rate %11d' % (i, parent.match_rate, child.match_rate)) i += 1 '''定义全局变量,获取待处理的图片名'''NAME = input('请输入原图片文件名:')LOOP = 100PREFIX = NAME.split('/')[-1].split('.')[0] # 取文件名PATH = os.path.abspath('.') # 取当前路径PATH = os.path.join(PATH,'results')TARGET = NAME # 源图片文件名TRIANGLE_NUM = 256 # 三角形个数 if __name__ == '__main__': #print('开始进行遗传算法') main()
(三)运行结果
(四)结果描述
代码是在遗传算法求解三角形火狐拼图改进而来,遗传算法求解正方形拼图游戏只需随机生成一个坐标和一个常数值(作为正方形的边长),通过正方形的性质,可以写出正方形其他三个点的坐标,确定了四个点的坐标之后,进行遗传和变异。
感谢各位的阅读!关于“Python怎么实现遗传算法”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341