我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python "手绘风格"数据可视化方法实例汇总

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python "手绘风格"数据可视化方法实例汇总

前言

大家好,今天给大家带来绘制“手绘风格”可视化作品的小技巧,主要涉及Python编码绘制。主要内容如下:

Python-matplotlib 手绘风格图表绘制

Python-cutecharts 手绘风格图表绘制

Python-py-roughviz 手绘风格图表绘制

Python-matplotlib 手绘风格图表绘制

使用Python进行可视化绘制,首先想到的当然是Matplotlib,“手绘风格”的图表绘制方法当然首选它。在Matplotlib中,matplotlib.pyplot.xkcd() 绘图函数就可以进行手绘风图表的绘制,下面小编通过具体样例进行展示:

样例一:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

with plt.xkcd():
    fig, ax = plt.subplots(figsize=(6.5,4),dpi=100)
    ax = df.plot.bar(color=["#BC3C28","#0972B5"],ec="black",rot=15,ax=ax)
    ax.set_ylim((0, 100))
    ax.legend(frameon=False)
    ax.set_title("EXAMPLE01 OF MATPLOTLIB.XKCD()",pad=20)
    ax.text(.8,-.22,'Visualization by DataCharm',transform = ax.transAxes,
            ha='center', va='center',fontsize = 10,color='black')

图片

Example01 of matplotlib.xkcd()

样例二:

df = pd.DataFrame({
    'x': [1, 2, 2.5, 3, 3.5, 4, 5],
    'y': [4, 4, 4.5, 5, 5.5, 6, 6],
})

with plt.xkcd():
    fig, ax = plt.subplots(figsize=(6.5,4),dpi=100)
    ax = df.plot.kde(color=["#BC3C28","#0972B5"],ax=ax)
    ax.set_ylim((0, 0.4))
    ax.legend(frameon=False)
    ax.set_title("EXAMPLE02 OF MATPLOTLIB.XKCD()",pad=20)
    ax.text(.8,-.22,'Visualization by DataCharm',transform = ax.transAxes,
            ha='center', va='center',fontsize = 10,color='black')

图片

Example02 of matplotlib.xkcd()

样例三:

with plt.xkcd():
    fig, ax = plt.subplots(figsize=(6.5,4),dpi=100)
    ax.spines["right"].set_color('none')
    ax.spines["top"].set_color('none')
    ax.set_xticks([])
    ax.set_yticks([])
    ax.set_ylim([-30, 10])
    data = np.ones(100)
    data[70:] -= np.arange(30)
    ax.annotate(
        'THE DAY I REALIZED\nI COULD COOK BACON\nWHENEVER I WANTED',
        xy=(70, 1), arrowprops=dict(arrowstyle='->'), xytext=(15, -10))

    ax.plot(data,color="#BC3C28")

    ax.set_xlabel('time')
    ax.set_ylabel('my overall health')
    ax.set_title("EXAMPLE03 OF MATPLOTLIB.XKCD()")
    ax.text(.8,-.15,'Visualization by DataCharm',transform = ax.transAxes,
            ha='center', va='center',fontsize = 10,color='black')

图片

Example03 of matplotlib.xkcd()

Python-cutecharts 手绘风格图表绘制

介绍完使用matplotlib绘制后,小编再介绍一个专门绘制“手绘风格”图表的Python可视化库-cutecharts。这个包可能有的小伙伴也有了解过,如果熟悉pyecharts的同学肯定会更加快速上手的。官网如下:https://github.com/cutecharts/cutecharts.py 。这里小编就直接列举几个例子,感兴趣的同学可自行探索哈~

样例一:

from cutecharts.charts import Bar
from cutecharts.components import Page
from cutecharts.faker import Faker


def bar_base() -> Bar:
    chart = Bar("Bar-cutecharts基本示例01")
    chart.set_options(labels=Faker.choose(), x_label="I'm xlabel", y_label="I'm ylabel")
    chart.add_series("series-A", Faker.values())
    return chart

bar_base().render_notebook()

注:render_notebook()方法可使绘图结果在jupyter notebook 中显示。

图片

样例二:

from cutecharts.charts import Line
from cutecharts.components import Page
from cutecharts.faker import Faker


def line_base() -> Line:
    chart = Line("Line-cutecharts基本示例02")
    chart.set_options(labels=Faker.choose(), x_label="I'm xlabel", y_label="I'm ylabel")
    chart.add_series("series-A", Faker.values())
    chart.add_series("series-B", Faker.values())
    return chart
line_base().render_notebook()

图片

Example02 of cutecharts

样例三:

from cutecharts.charts import Pie
from cutecharts.components import Page
from cutecharts.faker import Faker


def pie_base() -> Pie:
    chart = Pie("Pie-cutecharts基本示例03")
    chart.set_options(labels=Faker.choose(),legend_pos="upRight")
    chart.add_series(Faker.values())
    return chart

pie_base().render_notebook()

图片

Example03 of cutecharts

这里这是基本的图表绘制,实现定制化的属性参数也都没有介绍,小伙伴们可去官网查阅(由于没详细的官方文档,大家可参考样例和pyecharts的文档)

Python-py-roughviz 手绘风格图表绘制

这个和cutecharts包一样,都是基于roughViz.js转换编码绘制的,官网为:https://github.com/charlesdong1991/py-roughviz 。由于所支持的图表类型不是很多且各个图标设置的参数也不够完善,这里小编直接给出两个样例,感兴趣的小伙伴可自行探索哈~

样例一:

from roughviz.charts.bar import Bar
data = {
    "labels": ["North", "South", "East", "West"],
    "values": [10, 5, 8, 3]
}

bar = Bar(data=data, title="Bar-roughviz基本示例01", title_fontsize=3)
bar.set_options(xlabel="Region", ylabel="Number", color="orange")
bar.show()

图片

Example01 of roughviz

样例二:

from roughviz.charts.donut import Donut
donut = Donut(data={"labels": ['a', 'b'], "values": [10, 20]}, title="Donut-roughviz基本示例02", title_fontsize=3)
donut.show()

图片

Example02 of roughviz

总结

到此这篇关于Python "手绘风格"数据可视化方法的文章就介绍到这了,更多相关Python 手绘风格数据可视化内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python "手绘风格"数据可视化方法实例汇总

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录