我的编程空间,编程开发者的网络收藏夹
学习永远不晚

详解Python如何求不同分辨率图像的峰值信噪比

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

详解Python如何求不同分辨率图像的峰值信噪比

可以使用 Python 的 NumPy 和 OpenCV 库来实现这个任务。提前准备一张图片作为素材。

什么是峰值信噪比

峰值信噪比(Peak Signal to Noise Ratio,PSNR)是衡量图像质量的常用指标,它表示图像中信号和噪声的比值。通常,较高的 PSNR 值表示图像质量较高。

PSNR 的公式如下:

PSNR = 10 * log10(MAX^2 / MSE)

其中,MAX 是图像的最大亮度(一般为 255),MSE 是图像的均方误差,表示原图像和处理后的图像的差异。

如果需要在 Python 代码中计算 PSNR,可以使用 NumPy 库,并使用它提供的平方误差函数 (numpy.mean((A-B)**2)),然后计算 PSNR 值。还可以使用 OpenCV 库中的 PSNR 函数,它可以直接计算 PSNR 值:

import cv2
import numpy as np

img1 = cv2.imread("demo1.jpg")
img2 = cv2.imread("demo2.jpg")

psnr = cv2.PSNR(img1, img2)
print("PSNR:", psnr)

在计算 PSNR 之前,图像必须具有相同的分辨率,并且必须使用相同的颜色空间(例如,都是灰度图或彩色的图)。

PSNR 峰值信噪比补充说明

PSNR 是一个非常常见的图像质量评估指标,广泛应用于图像压缩、图像处理、图像识别等领域。

需要注意,PSNR 仅考虑图像的像素均方误差,并不考虑其他的图像质量因素,例如:图像的细节和纹理等。
因此,在评估图像质量时,可以使用其他图像质量评估指标,例如:结构相似度(SSIM),以获得更全面的评估结果。

使用 OpenCV 库来实现这个任务

开始前需要先读入图像的灰度图。

import cv2
import numpy as np

img = cv2.imread("demo.jpg")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

使用 NumPy 的 mean 和 std 函数计算图像的均值和标准差:

mean, std = np.mean(gray), np.std(gray)

最后,计算峰值信噪比:

PSNR = 20 * np.log10(255 / np.sqrt(mean))

运行代码得到如下结果:

峰值信噪比的计算基于图像的灰度图,因此可以直接对灰度图进行计算。

PSNR 的计算值受图像的亮度影响

如果需要比较不同分辨率的图像,可以先将图像调整到相同的亮度,以便更准确地评估图像质量。

以下是如何使用 Python 和 OpenCV 将图像调整到相同亮度的代码示例:

import cv2
import numpy as np

img1 = cv2.imread("demo.jpg")
img2 = cv2.imread("demo1.jpg")

img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)

img1 = cv2.normalize(img1, None, 0, 255, cv2.NORM_MINMAX)
img2 = cv2.normalize(img2, None, 0, 255, cv2.NORM_MINMAX)

psnr = cv2.PSNR(img1, img2)
print("PSNR:", psnr)

上面的代码将两张图像转换为灰度图,并使用 OpenCV 的 normalize 函数将其调整到相同的亮度。随后可以计算 PSNR。

计算不同分辨率图像的 PSNR

使用下面的代码计算不同分辨率图像的 PSNR:

import cv2
import numpy as np

img1 = cv2.imread("demo1.jpg")
img2 = cv2.imread("demo2.jpg")

img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)

img1 = cv2.resize(img1, (100, 100))
img2 = cv2.resize(img2, (100, 100))

img1 = cv2.normalize(img1, None, 0, 255, cv2.NORM_MINMAX)
img2 = cv2.normalize(img2, None, 0, 255, cv2.NORM_MINMAX)

psnr = cv2.PSNR(img1, img2)
print("PSNR:", psnr)

上面的代码先将两张图像转换为灰度图,然后使用 OpenCV 的 resize() 函数将图像的分辨率调整到相同。

接下来,使用上面提到的代码将图像调整到相同的亮度,最后计算 PSNR。

python 求不同分辨率图像的峰值信噪比 | 其他知识点补充

PSNR 的应用:PSNR 常常被用来评估图像压缩、图像处理、图像修复等技术的质量。

PSNR 的限制:尽管 PSNR 是一个有用的指标,但它并不能完全反映图像质量,因为它不能评估图像细节的损失。

其他评估指标:除了 PSNR 之外,还有其他评估图像质量的指标,例如:SSIM(结构相似性指数)、MSE(均方误差)等。

以上就是详解Python如何求不同分辨率图像的峰值信噪比的详细内容,更多关于Python求图像峰值信噪比 的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

详解Python如何求不同分辨率图像的峰值信噪比

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

详解Python如何求不同分辨率图像的峰值信噪比

这篇文章主要为大家详细介绍了如何利用Python中的 NumPy 和 OpenCV 库实现求不同分辨率图像的峰值信噪比,感兴趣的小伙伴可以跟随不想一起学习一下
2023-01-31

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录