我的编程空间,编程开发者的网络收藏夹
学习永远不晚

【完美解决】RuntimeError: one of the variables needed for gradient computation has been modified by an inp

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

【完美解决】RuntimeError: one of the variables needed for gradient computation has been modified by an inp

正文在后面,往下拉即可~~~~~~~~~~~~


欢迎各位深度学习的小伙伴订阅的我的专栏

Pytorch深度学习·理论篇+实战篇(2023版)专栏地址:

💛Pytorch深度学习·理论篇(2023版)https://blog.csdn.net/qq_39237205/category_12077968.html

 💚Pytorch深度学习·动手篇(2023版)https://blog.csdn.net/qq_39237205/category_12077994.html


正文开始

【就看这一篇就行】RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [256]] is at version 4; expected version 3 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).

针对网上搜到的以下办法均无效的情况:
1)找到网络模型中的 inplace 操作,将inplace=True改成 inplace=False,例如torch.nn.ReLU(inplace=False)
2)将代码中的“a+=b”之类的操作改为“c = a + b”
3)将loss.backward()函数内的参数retain_graph值设置为True, loss.backward(retain_graph=True),如果retain_graph设置为False,计算过程中的中间变量使用完即被释放掉。

↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑以上方案无效↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑

↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓正确解决方案如下↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓


1、问题描述:

 提示在 loss.backward()报错

RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [256]] is at version 4; expected version 3 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).

2、问题分析

在用PyTorch进行分布式训练时,遇到以上错误。

日志的大概意思是用于梯度计算的变量通过inplace操作被修改。网上的一些解决方法基本是检查模型定义中是否有inplace=True 设置以及+=操作符。但是这两种方案都不能解决遇到的问题。

经过一些调试发现,只有当某些特定情况下才会触发此报错。下面结合一个对比学习的例子(并不是完整的脚本)来简单描述:

import torchimport torch.nn as nnfrom torchvision.models import resnet50def main():    model = resnet50(num_classes=256).cuda()    model = nn.parallel.DistributedDataParallel(model,                     device_ids=[args.local_rank],                     find_unused_parameters=True)    criterion = nn.MSELoss()        optimizer = torch.optim.SGD(model.parameters(),    lr=0.001,    momentum=0.99,    weight_decay=1e-4)    for i in range(10):        input0 = torch.randn((4, 3, 224, 224), dtype=torch.float32).cuda()        input2 = torch.randn((4, 3, 224, 224), dtype=torch.float32).cuda()        out1 = model(input0)        out2 = model(input1)        loss = criterion(out1, out2)        optimizer.zero_grad()        loss.backward()        optimizer.step()if __name__ == '__main__':    main()

经过调试发现,当使用nn.DataParallel并行训练或者单卡训练均可正常运行;另外如果将两次模型调用集成到model中,即通过out1, out2 = model(input0, input1) 的方式在分布式训练下也不会报错。

由此可以猜测:在分布式训练中,如果对同一模型进行多次调用则会触发以上报错,即

nn.parallel.DistributedDataParallel方法封装的模型,forword()函数和backward()函数必须交替执行,如果执行多个(次)forward()然后执行一次backward()则会报错。

那么解决此问题的入手点则可以聚焦到nn.parallel.DistributedDataParallel接口上。 通过查询PyTorch官方文档发现此接口下的两个参数:

- find_unused_parameters: 如果模型的输出有不需要进行反向传播的,此参数需要设置为True;若你的代码运行后卡住不动,基本上就是该参数的问题。- broadcast_buffers: 该参数默认为True,设置为True时,在模型执行forward之前,gpu0会把buffer中的参数值全部覆盖到别的gpu上。

问题基本可以定位出来了,即broadcast_buffers=True导致参数被覆盖修改。

3、解决办法

# 在该出错文件上找到被调用的DistributedDataParallel(),将broadcast_buffers设置为Falsemodel = nn.parallel.DistributedDataParallel(model,                  device_ids=[args.local_rank],                  broadcast_buffers=False,                 find_unused_parameters=True)

RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [2048]] is at version 4; expected version 3 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).

来源地址:https://blog.csdn.net/qq_39237205/article/details/125728708

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

【完美解决】RuntimeError: one of the variables needed for gradient computation has been modified by an inp

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录