我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python K-means实现简单图像聚类的示例代码

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python K-means实现简单图像聚类的示例代码

这里直接给出第一个版本的直接实现:


import os
import numpy as np
from sklearn.cluster import KMeans
import cv2
from imutils import build_montages
import matplotlib.image as imgplt

image_path = []
all_images = []
images = os.listdir('./images')

for image_name in images:
    image_path.append('./images/' + image_name)
for path in image_path:
    image = imgplt.imread(path)
    image = image.reshape(-1, )
    all_images.append(image)

clt = KMeans(n_clusters=2)
clt.fit(all_images)
labelIDs = np.unique(clt.labels_)

for labelID in labelIDs:
    idxs = np.where(clt.labels_ == labelID)[0]
    idxs = np.random.choice(idxs, size=min(25, len(idxs)),
		replace=False)
    show_box = []
    for i in idxs:
        image = cv2.imread(image_path[i])
        image = cv2.resize(image, (96, 96))
        show_box.append(image)
    montage = build_montages(show_box, (96, 96), (5, 5))[0]

    title = "Type {}".format(labelID)
    cv2.imshow(title, montage)
    cv2.waitKey(0)

主要需要注意的问题是对K-Means原理的理解。K-means做的是对向量的聚类,也就是说,假设要处理的是224×224×3的RGB图像,那么就得先将其转为1维的向量。在上面的做法里,我们是直接对其展平:


image = image.reshape(-1, )

那么这么做的缺陷也是十分明显的。例如,对于两张一模一样的图像,我们将前者向左平移一个像素。这么做下来后两张图像在感官上几乎没有任何区别,但由于整体平移会导致两者的图像矩阵逐像素比较的结果差异巨大。以橘子汽车聚类为例,实验结果如下:

在这里插入图片描述

在这里插入图片描述

可以看到结果是比较差的。因此,我们进行改进,利用ResNet-50进行图像特征的提取(embedding),在特征的基础上聚类而非直接在像素上聚类,代码如下:


import os
import numpy as np
from sklearn.cluster import KMeans
import cv2
from imutils import build_montages
import torch.nn as nn
import torchvision.models as models
from PIL import Image
from torchvision import transforms

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        resnet50 = models.resnet50(pretrained=True)
        self.resnet = nn.Sequential(resnet50.conv1,
                                    resnet50.bn1,
                                    resnet50.relu,
                                    resnet50.maxpool,
                                    resnet50.layer1,
                                    resnet50.layer2,
                                    resnet50.layer3,
                                    resnet50.layer4)

    def forward(self, x):
        x = self.resnet(x)
        return x

net = Net().eval()

image_path = []
all_images = []
images = os.listdir('./images')

for image_name in images:
    image_path.append('./images/' + image_name)
for path in image_path:
    image = Image.open(path).convert('RGB')
    image = transforms.Resize([224,244])(image)
    image = transforms.ToTensor()(image)
    image = image.unsqueeze(0)
    image = net(image)
    image = image.reshape(-1, )
    all_images.append(image.detach().numpy())

clt = KMeans(n_clusters=2)
clt.fit(all_images)
labelIDs = np.unique(clt.labels_)

for labelID in labelIDs:
	idxs = np.where(clt.labels_ == labelID)[0]
	idxs = np.random.choice(idxs, size=min(25, len(idxs)),
		replace=False)
	show_box = []
	for i in idxs:
		image = cv2.imread(image_path[i])
		image = cv2.resize(image, (96, 96))
		show_box.append(image)
	montage = build_montages(show_box, (96, 96), (5, 5))[0]

	title = "Type {}".format(labelID)
	cv2.imshow(title, montage)
	cv2.waitKey(0)

可以发现结果明显改善:

在这里插入图片描述

在这里插入图片描述

到此这篇关于Python K-means实现简单图像聚类的示例代码的文章就介绍到这了,更多相关Python K-means图像聚类内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python K-means实现简单图像聚类的示例代码

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

K-means聚类算法介绍与利用python实现的代码示例

聚类 今天说K-means聚类算法,但是必须要先理解聚类和分类的区别,很多业务人员在日常分析时候不是很严谨,混为一谈,其实二者有本质的区别。 分类其实是从特定的数据中挖掘模式,作出判断的过程。比如Gmail邮箱里有垃圾邮件分类器,一开始的时
2022-06-04

K均值聚类算法的Java版实现代码示例

1.简介K均值聚类算法是先随机选取K个对象作为初始的聚类中心。然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。一旦全部对象都被分配了,每个聚类的聚类中心会根据聚
2023-05-30

python利用K-Means算法实现对数据的聚类案例详解

目的是为了检测出采集数据中的异常值。所以很明确,这种情况下的簇为2:正常数据和异常数据两大类 1、安装相应的库import matplotlib.pyplot as plt # 用于可视化 from sklearn.cluster imp
2022-06-02

python+opencv实现的简单人脸识别代码示例

# 源码如下:#!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv def detect_object(image
2022-06-04

PHP实现简单鉴权的示例代码

PHP鉴权示例代码详解本文提供了一个使用会话变量在PHP中实现简单鉴权的代码示例。它包括创建登录页面、处理脚本、仪表板页面和注销脚本。该示例易于实施,适用于小型应用程序。然而,对于大型或多设备场景,需要考虑扩展性问题。
PHP实现简单鉴权的示例代码
2024-04-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录