我的编程空间,编程开发者的网络收藏夹
学习永远不晚

CoordConv实现卷积加上坐标实例详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

CoordConv实现卷积加上坐标实例详解

CoordConv:给你的卷积加上坐标

一、理论介绍

1.1 CoordConv理论详解

这是一篇考古的论文复现项目,在2018年Uber团队提出这个CoordConv模块的时候有很多文章对其进行批评,认为这个不值得发布一篇论文,但是现在重新看一下这个idea,同时再对比一下目前Transformer中提出的位置编码(Position Encoding),你就会感概历史是个圈,在角点卷积中,为卷积添加两个坐标编码实际上与Transformer中提出的位置编码是同样的道理。 众所周知,深度学习里的卷积运算是具有平移等变性的,这样可以在图像的不同位置共享统一的卷积核参数,但是这样卷积学习过程中是不能感知当前特征在图像中的坐标的,论文中的实验证明如下图所示。通过该实验,作者证明了传统卷积在卷积核进行局部运算时,仅仅能感受到局部信息,并且是无法感受到位置信息的。CoordConv就是通过在卷积的输入特征图中新增对应的通道来表征特征图像素点的坐标,让卷积学习过程中能够一定程度感知坐标来提升检测精度。

传统卷积无法将空间表示转换成笛卡尔空间中的坐标和one-hot像素空间中的坐标。卷积是等变的,也就是说当每个过滤器应用到输入上时,它不知道每个过滤器在哪。我们可以帮助卷积,让它知道过滤器的位置。这一过程需要在输入上添加两个通道实现,一个在i坐标,另一个在j坐标。通过上面的添加坐标的操作,我们可以的出一种新的卷积结构--CoordConv,其结构如下图所示:

二、代码实战

本部分根据CoordConv论文并参考飞桨的官方实现完成CoordConv的复现。

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.regularizer import L2Decay
from paddle.nn import AvgPool2D, Conv2D

2.2 CoordConv类代码实现

首先继承nn.Layer基类,其次使用paddle.arange定义gx``gy两个坐标,并且停止它们的梯度反传gx.stop_gradient = True,最后将它们concat到一起送入卷积即可。

class CoordConv(nn.Layer):
    def __init__(self, in_channels, out_channels, kernel_size, stride, padding):
        super(CoordConv, self).__init__()
        self.conv = Conv2D(
            in_channels + 2, out_channels , kernel_size , stride , padding)
    def forward(self, x):
        b = x.shape[0]
        h = x.shape[2]
        w = x.shape[3]
        gx = paddle.arange(w, dtype='float32') / (w - 1.) * 2.0 - 1.
        gx = gx.reshape([1, 1, 1, w]).expand([b, 1, h, w])
        gx.stop_gradient = True
        gy = paddle.arange(h, dtype='float32') / (h - 1.) * 2.0 - 1.
        gy = gy.reshape([1, 1, h, 1]).expand([b, 1, h, w])
        gy.stop_gradient = True
        y = paddle.concat([x, gx, gy], axis=1)
        y = self.conv(y)
        return y
class dcn2(paddle.nn.Layer):
    def __init__(self, num_classes=1):
        super(dcn2, self).__init__()
        self.conv1 = paddle.nn.Conv2D(in_channels=3, out_channels=32, kernel_size=(3, 3), stride=1, padding = 1)
        self.conv2 = paddle.nn.Conv2D(in_channels=32, out_channels=64, kernel_size=(3,3),  stride=2, padding = 0)
        self.conv3 = paddle.nn.Conv2D(in_channels=64, out_channels=64, kernel_size=(3,3), stride=2, padding = 0)
        self.offsets = paddle.nn.Conv2D(64, 18, kernel_size=3, stride=2, padding=1)
        self.mask = paddle.nn.Conv2D(64, 9, kernel_size=3, stride=2, padding=1)
        self.conv4 = CoordConv(64, 64, (3,3), 2, 1)
        self.flatten = paddle.nn.Flatten()
        self.linear1 = paddle.nn.Linear(in_features=1024, out_features=64)
        self.linear2 = paddle.nn.Linear(in_features=64, out_features=num_classes)
    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = self.conv3(x)
        x = F.relu(x)
        x = self.conv4(x)
        x = F.relu(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = F.relu(x)
        x = self.linear2(x)
        return x
cnn3 = dcn2()
model3 = paddle.Model(cnn3)
model3.summary((64, 3, 32, 32))
---------------------------------------------------------------------------
 Layer (type)       Input Shape          Output Shape         Param #    
===========================================================================
   Conv2D-26     [[64, 3, 32, 32]]     [64, 32, 32, 32]         896      
   Conv2D-27     [[64, 32, 32, 32]]    [64, 64, 15, 15]       18,496     
   Conv2D-28     [[64, 64, 15, 15]]     [64, 64, 7, 7]        36,928     
   Conv2D-31      [[64, 66, 7, 7]]      [64, 64, 4, 4]        38,080     
  CoordConv-4     [[64, 64, 7, 7]]      [64, 64, 4, 4]           0       
   Flatten-1      [[64, 64, 4, 4]]        [64, 1024]             0       
   Linear-1         [[64, 1024]]           [64, 64]           65,600     
   Linear-2          [[64, 64]]            [64, 1]              65       
===========================================================================
Total params: 160,065
Trainable params: 160,065
Non-trainable params: 0
---------------------------------------------------------------------------
Input size (MB): 0.75
Forward/backward pass size (MB): 26.09
Params size (MB): 0.61
Estimated Total Size (MB): 27.45
---------------------------------------------------------------------------
{'total_params': 160065, 'trainable_params': 160065}
class MyNet(paddle.nn.Layer):
    def __init__(self, num_classes=1):
        super(MyNet, self).__init__()
        self.conv1 = paddle.nn.Conv2D(in_channels=3, out_channels=32, kernel_size=(3, 3), stride=1, padding = 1)
        self.conv2 = paddle.nn.Conv2D(in_channels=32, out_channels=64, kernel_size=(3,3),  stride=2, padding = 0)
        self.conv3 = paddle.nn.Conv2D(in_channels=64, out_channels=64, kernel_size=(3,3), stride=2, padding = 0)
        self.conv4 = paddle.nn.Conv2D(in_channels=64, out_channels=64, kernel_size=(3,3), stride=2, padding = 1)
        self.flatten = paddle.nn.Flatten()
        self.linear1 = paddle.nn.Linear(in_features=1024, out_features=64)
        self.linear2 = paddle.nn.Linear(in_features=64, out_features=num_classes)
    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = self.conv3(x)
        x = F.relu(x)
        x = self.conv4(x)
        x = F.relu(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = F.relu(x)
        x = self.linear2(x)
        return x

# 可视化模型
cnn1 = MyNet()
model1 = paddle.Model(cnn1)
model1.summary((64, 3, 32, 32))
---------------------------------------------------------------------------
 Layer (type)       Input Shape          Output Shape         Param #    
===========================================================================
   Conv2D-1      [[64, 3, 32, 32]]     [64, 32, 32, 32]         896      
   Conv2D-2      [[64, 32, 32, 32]]    [64, 64, 15, 15]       18,496     
   Conv2D-3      [[64, 64, 15, 15]]     [64, 64, 7, 7]        36,928     
   Conv2D-4       [[64, 64, 7, 7]]      [64, 64, 4, 4]        36,928     
   Flatten-1      [[64, 64, 4, 4]]        [64, 1024]             0       
   Linear-1         [[64, 1024]]           [64, 64]           65,600     
   Linear-2          [[64, 64]]            [64, 1]              65       
===========================================================================
Total params: 158,913
Trainable params: 158,913
Non-trainable params: 0
---------------------------------------------------------------------------
Input size (MB): 0.75
Forward/backward pass size (MB): 25.59
Params size (MB): 0.61
Estimated Total Size (MB): 26.95
---------------------------------------------------------------------------
{'total_params': 158913, 'trainable_params': 158913}

总结

相信通过之前的教程,相信大家已经能够熟练掌握了迅速开启训练的方法。所以,之后的教程我都会关注于具体的代码实现以及相关的理论介绍。如无必要,不再进行对比实验。本次教程主要对CoordConv的理论进行了介绍,对其进行了复现,并展示了其在网络结构中的用法。大家可以根据的实际需要,将其移植到自己的网络中。

一些需要注意的点

CoordConv的位置在网络中应该尽量靠前

最好的应用方向是姿态估计等对位置高度敏感的CV任务

以上就是CoordConv实现卷积加上坐标实例详解的详细内容,更多关于CoordConv卷积加坐标的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

CoordConv实现卷积加上坐标实例详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

CoordConv实现卷积加上坐标实例详解

这篇文章主要介绍了CoordConv实现卷积加上坐标实例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-03-15

CoordConv如何实现卷积加上坐标

这篇文章主要介绍了CoordConv如何实现卷积加上坐标的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇CoordConv如何实现卷积加上坐标文章都会有所收获,下面我们一起来看看吧。CoordConv:给你的卷积
2023-07-05

Python绘图实现坐标轴共享与复用详解

本指南详细介绍了在Python中使用Matplotlib库共享和复用坐标轴。涵盖了通过twinx()和twiny()函数实现坐标轴共享以及使用subplot()函数实现坐标轴复用的方法。示例演示了如何使用这些技术创建更复杂且有用的图表。还讨论了共享和复用坐标轴的优点和局限性。
Python绘图实现坐标轴共享与复用详解
2024-04-02

dos中如何实现本机每个盘都添加上卷标

这篇文章给大家分享的是有关dos中如何实现本机每个盘都添加上卷标的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。代码如下:@ ECHO OFF @ ECHO. @ ECHO. 说 明 @ ECHO --------
2023-06-09

Base64加解密的实现方式实例详解

Base64加解密的实现方式实例详解本实现方式基于JDK 1.8 实现:import java.util.Base64; import java.util.Base64.Decoder; import java.util.Base64.En
2023-05-31

Three.jsGLTF模型加载实现示例详解

这篇文章主要为大家介绍了Three.jsGLTF模型加载实现示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-05-16

Golang实现AES对称加密算法实例详解

所谓对称加密是指在加密和解码时使用同一密钥的加密方式,下面这篇文章主要给大家介绍了关于Golang实现AES对称加密算法的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
2023-02-21

Android实现上传文件到服务器实例详解

本实例实现每隔5秒上传一次,通过服务器端获取手机上传过来的文件信息并做相应处理;采用Android+Struts2技术。一、Android端实现文件上传 1)、新建一个Android项目命名为androidUpload,目录结构如下:2)、
2022-06-06

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录