我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python使用Pillow实现图像基本变化

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python使用Pillow实现图像基本变化

一、图像处理

1. 灰度图像

灰度图像矩阵元素的取值范围通常为 [0,255] 。因此其数据类型一般为8位无符号整数的(int8),这就是人们经常提到的256灰度图像。“0”表示纯黑色,“255”表示纯白色,中间的数字从小到大表示由黑到白的过渡色。在某些软件中,灰度图像也可以用双精度数据类型(double)表示,像素的值域为[0,1],0代表黑色,1代表白色,0到1之间的小数表示不同的灰度等级。二值图像可以看成是灰度图像的一个特例。

2. 二值图像

一幅二值图像的二维矩阵仅由0、1两个值构成,“0”代表黑色,“1”代白色。由于每一像素(矩阵中每一元素)取值仅有0、1两种可能,所以计算机中二值图像的数据类型通常为1个二进制位。二值图像通常用于文字、线条图的扫描识别(OCR)和掩膜图像的存储。

3. 索引图像

索引图像的文件结构比较复杂,除了存放图像的二维矩阵外,还包括一个称之为颜色索引矩阵MAP的二维数组。MAP的大小由存放图像的矩阵元素值域决定,如矩阵元素值域为[0,255],则MAP矩阵的大小为256x3,用MAP=[RGB]表示。MAP中每一行的三个元素分别指定该行对应颜色的红、绿、蓝单色值,MAP中每一行对应图像矩阵像素的一个灰度值,如某一像素的灰度值为64,则该像素就与MAP中的第64行建立了映射关系,该像素在屏幕上的实际颜色由第64行的[RGB]组合决定。也就是说,图像在屏幕上显示时,每一像素的颜色由存放在矩阵中该像素的灰度值作为索引通过检索颜色索引矩阵MAP得到。索引图像的数据类型一般为8位无符号整形(int8),相应索引矩阵MAP的大小为256x3,因此一般索引图像只能同时显示256种颜色,但通过改变索引矩阵,颜色的类型可以调整。索引图像的数据类型也可采用双精度浮点型(double)。索引图像一般用于存放色彩要求比较简单的图像,如Windows中色彩构成比较简单的壁纸多采用索引图像存放,如果图像的色彩比较复杂,就要用到RGB真彩色图像。

4. RGB彩色图像

RGB图像与索引图像一样都可以用来表示彩色图像。与索引图像一样,它分别用红(R)、绿(G)、蓝(B)三原色的组合来表示每个像素的颜色。但与索引图像不同的是,RGB图像每一个像素的颜色值(由RGB三原色表示)直接存放在图像矩阵中,由于每一像素的颜色需由R、G、B三个分量来表示,M、N分别表示图像的行列数,三个M x N的二维矩阵分别表示各个像素的R、G、B三个颜色分量。RGB图像的数据类型一般为8位无符号整形,通常用于表示和存放真彩色图像,当然也可以存放灰度图像。

5. 图像存储方式

数字化图像数据有两种存储方式:位图存储(Bitmap)和矢量存储(Vector)

我们平常是以图像分辨率(即像素点)和颜色数来描述数字图象的。

例如:一个800*600的图像大小为:

彩色RGB:(800*600*3)/1024/1024=1.3733MB

灰度:1.373/3=0.46MB

二值图:0.46/8=0.057MB

二、图像处理基础操作

1.查看图片属性

from skimage import io
#导入io模块,以读取目标路径下的图片
img = io.imread( ' ./tupian.jpg ')#读取tupian.jpg文件
print(type(img ))
#显示类型
print( img .shape)
#显示尺寸
print(img. shape[0])#显示高度print( img . shape[1])#显示宽度
print( img . shape[2])#显示图片通道数print( img.size)
#显示总像素数
print(img .max( ) )
#显示最大像素值
print(img .min( ) )
#显示最小像素值
print(img.mean( ))
#像素平均值
print( img[e][0])
#指定像素点的像素值
io.imshow( img)
#io模块下显示图像
io.show( )
#显示图像

2. 显示RGB不同通道

img_r=image[:,, :,o]
img_g=imagel:,:,1]
img_b=image[:,:,2]
plt.subplot(2,2,1)
io.imshow(image)
plt.subplot(2,2,2)
io.imshow(img_r)
plt.subplot(2,2,3)
io.imshow(img_g)
plt.subplot(2,2,4)
io.imshow(img_b)
plt.show()

3.PGB和HSV的转换

#RGB→HSV
max=max(R,G,B);
min=min(R,G,B);
V=max(R,G,B);
S=(max-min)/max;
if (R = max) H =(G-B)/(max-min)* 60;
if (G = max) H = 120+(B-R)/(max-min)* 60;
if (B = max) H = 240 +(R-G)/(max-min)* 60;
if (H < 0) H = H+ 360;
#HSV→RGB
if (s = 0)
	R=G=B=V;
else
	H /= 60;
	i = INTEGER(H);
	f = H - i;
	a = V * ( 1 - s );
	b = V * ( 1 - s * f );
	c = V * ( 1 - s * (1 - f ) );
switch(i)
	case 0: R = V; G = c; B = a;
	case 1: R = b; G = v; B = a;
	case 2: R = a; G = v; B = c;
	case 3: R = a; G = b; B = v;
	case 4: R = c; G = a; B = v;
	case 5: R = v; G = a; B = b;

三、实例

1.导入第三方库

from PIL import  Image
from matplotlib import pyplot as plt
from PIL import ImageFilter
from PIL import ImageEnhance

安装第三方库的方法:

pip install xxx

2.修改显示的图像大小的方法

print("默认图片大小是 ", plt.rcParams["figure.figsize"])
plt.rcParams["figure.figsize"] = (20, 10)
print("修改后默认图片大小是", plt.rcParams["figure.figsize"])

3.打开一张图片

img=Image.open(r'C:\Users\20415\Desktop\03.png')
plt.imshow(img)
plt.show()

4.转换为灰阶图像

#去色处理
img_L=Image.open(r'C:\Users\20415\Desktop\03.png').convert("L")
plt.imshow(img_L)
plt.show()

5.对图像进行增强处理

#图像增强处理
out = img.filter(ImageFilter.DETAIL)
plt.subplot(121),plt.imshow(img),plt.title("befor")
plt.subplot(122),plt.imshow(out),plt.title("after")
plt.imshow(out)
plt.show()

6.提高图像清晰度

#将清晰度提高10倍
img_0=Image.open(r'C:\Users\20415\Desktop\03.png')
shp=ImageEnhance.Sharpness(img_0)
img_0_shp=shp.enhance(10)
plt.subplot(121),plt.imshow(img_0),plt.title("befor")
plt.subplot(122),plt.imshow(img_0_shp),plt.title("after")
plt.show()

7.提高图像对比度

#将对比度提高1.8倍
img_0=Image.open(r'C:\Users\20415\Desktop\03.png')
enh = ImageEnhance.Contrast(img_0)
img_0_cont=enh.enhance(1.8)
plt.subplot(121),plt.imshow(img_0),plt.title("befor")
plt.subplot(122),plt.imshow(img_0_cont),plt.title("after")
plt.show()

8.提高图像色彩饱和度

#将色彩饱和度提高1.8倍
img_1=Image.open(r'C:\Users\20415\Desktop\03.png')
color=ImageEnhance.Color(img_1)
img_1_cont=color.enhance(1.8)
plt.subplot(121),plt.imshow(img_1),plt.title("befor")
plt.subplot(122),plt.imshow(img_1_cont),plt.title("after")
plt.show()

9.提高图像亮度

#亮度
img2=Image.open(r'C:\Users\20415\Desktop\03.png')
brg=ImageEnhance.Brightness(img2)
img2_brg=brg.enhance(1.1)
plt.subplot(121),plt.imshow(img2),plt.title("befor")
plt.subplot(122),plt.imshow(img2_brg),plt.title("after")
plt.show()

pillow官网

Pillow (PIL Fork) 9.2.0 documentation

以上就是Python使用Pillow实现图像基本变化的详细内容,更多关于Python Pillow图像变化的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python使用Pillow实现图像基本变化

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python编程中使用Pillow来处理图像的基础教程

安装 刚接触Pillow的朋友先来看一下Pillow的安装方法,在这里我们以Mac OS环境为例: (1)、使用 pip 安装 Python 库。pip 是 Python 的包管理工具,安装后就可以直接在命令行一站式地安装/管理各种库了(p
2022-06-04

浅谈Python Pygame图像的基本使用

笛卡尔坐标系 游戏离不开坐标,我们来康康pygame中坐标是如何设立的吧~窗口左上角坐标(0,0),横轴正向向右,纵轴正向向下 实际效果 碰到边框就返回(其实是小球碰撞实验,我不爱用正经的小球,所以…)代码import pygame,sys
2022-06-02

如何基于Python实现图像的傅里叶变换

这篇文章主要介绍了如何基于Python实现图像的傅里叶变换,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。前言首先是本文总体代码,改一下图像的读取路径就可以运行了,但我还是建议
2023-06-22

Python+OpenCV实现图像基本操作的示例详解

这篇文章主要为大家详细介绍了Python通过OpenCV实现图像的一些基本处理操作的方法,文中的示例代码简洁易懂,具有一定的参考价值,感兴趣的可以学习一下
2023-05-16

python使用socket实现图像传输功能

在python中使用socket进行linux服务器与win10主机间的图像传输,供大家参考,具体内容如下 前提:服务器与主机需要在同一局域网内 使用方法: (1)分别将下面两段代码存入对应位置 (2)先运行服务器端代码,显示Wait fo
2022-06-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录