C++怎么实现链表排序
本篇内容主要讲解“C++怎么实现链表排序”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“C++怎么实现链表排序”吧!
链表排序
Sort a linked list in O(n log n) time using constant space complexity.
Example 1:
Input: 4->2->1->3
Output: 1->2->3->4
Example 2:
Input: -1->5->3->4->0
Output: -1->0->3->4->5
常见排序方法有很多,插入排序,选择排序,堆排序,快速排序,冒泡排序,归并排序,桶排序等等。。它们的时间复杂度不尽相同,而这里题目限定了时间必须为O(nlgn),符合要求只有快速排序,归并排序,堆排序,而根据单链表的特点,最适于用归并排序。为啥呢?这是由于链表自身的特点决定的,由于不能通过坐标来直接访问元素,所以快排什么的可能不太容易实现(但是被评论区的大神们打脸,还是可以实现的),堆排序的话,如果让新建结点的话,还是可以考虑的,若只能交换结点,最好还是不要用。而归并排序(又称混合排序)因其可以利用递归来交换数字,天然适合链表这种结构。归并排序的核心是一个 merge() 函数,其主要是合并两个有序链表,这个在 LeetCode 中也有单独的题目 Merge Two Sorted Lists。由于两个链表是要有序的才能比较容易 merge,那么对于一个无序的链表,如何才能拆分成有序的两个链表呢?我们从简单来想,什么时候两个链表一定都是有序的?就是当两个链表各只有一个结点的时候,一定是有序的。而归并排序的核心其实是分治法 Divide and Conquer,就是将链表从中间断开,分成两部分,左右两边再分别调用排序的递归函数 sortList(),得到各自有序的链表后,再进行 merge(),这样整体就是有序的了。因为子链表的递归函数中还是会再次拆成两半,当拆到链表只有一个结点时,无法继续拆分了,而这正好满足了前面所说的“一个结点的时候一定是有序的”,这样就可以进行 merge 了。然后再回溯回去,每次得到的都是有序的链表,然后进行 merge,直到还原整个长度。这里将链表从中间断开的方法,采用的就是快慢指针,大家可能对快慢指针找链表中的环比较熟悉,其实找链表中的中点同样好使,因为快指针每次走两步,慢指针每次走一步,当快指针到达链表末尾时,慢指针正好走到中间位置,参见代码如下:
C++ 解法一:
class Solution {public: ListNode* sortList(ListNode* head) { if (!head || !head->next) return head; ListNode *slow = head, *fast = head, *pre = head; while (fast && fast->next) { pre = slow; slow = slow->next; fast = fast->next->next; } pre->next = NULL; return merge(sortList(head), sortList(slow)); } ListNode* merge(ListNode* l1, ListNode* l2) { ListNode *dummy = new ListNode(-1); ListNode *cur = dummy; while (l1 && l2) { if (l1->val < l2->val) { cur->next = l1; l1 = l1->next; } else { cur->next = l2; l2 = l2->next; } cur = cur->next; } if (l1) cur->next = l1; if (l2) cur->next = l2; return dummy->next; }};
Java 解法一:
public class Solution { public ListNode sortList(ListNode head) { if (head == null || head.next == null) return head; ListNode slow = head, fast = head, pre = head; while (fast != null && fast.next != null) { pre = slow; slow = slow.next; fast = fast.next.next; } pre.next = null; return merge(sortList(head), sortList(slow)); } public ListNode merge(ListNode l1, ListNode l2) { ListNode dummy = new ListNode(-1); ListNode cur = dummy; while (l1 != null && l2 != null) { if (l1.val < l2.val) { cur.next = l1; l1 = l1.next; } else { cur.next = l2; l2 = l2.next; } cur = cur.next; } if (l1 != null) cur.next = l1; if (l2 != null) cur.next = l2; return dummy.next; }}
下面这种方法也是归并排序,而且在merge函数中也使用了递归,这样使代码更加简洁啦~
C++ 解法二:
class Solution {public: ListNode* sortList(ListNode* head) { if (!head || !head->next) return head; ListNode *slow = head, *fast = head, *pre = head; while (fast && fast->next) { pre = slow; slow = slow->next; fast = fast->next->next; } pre->next = NULL; return merge(sortList(head), sortList(slow)); } ListNode* merge(ListNode* l1, ListNode* l2) { if (!l1) return l2; if (!l2) return l1; if (l1->val < l2->val) { l1->next = merge(l1->next, l2); return l1; } else { l2->next = merge(l1, l2->next); return l2; } }};
Java 解法二:
public class Solution { public ListNode sortList(ListNode head) { if (head == null || head.next == null) return head; ListNode slow = head, fast = head, pre = head; while (fast != null && fast.next != null) { pre = slow; slow = slow.next; fast = fast.next.next; } pre.next = null; return merge(sortList(head), sortList(slow)); } public ListNode merge(ListNode l1, ListNode l2) { if (l1 == null) return l2; if (l2 == null) return l1; if (l1.val < l2.val) { l1.next = merge(l1.next, l2); return l1; } else { l2.next = merge(l1, l2.next); return l2; } }}
到此,相信大家对“C++怎么实现链表排序”有了更深的了解,不妨来实际操作一番吧!这里是编程网网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341