我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Redis中Redisson布隆过滤器的学习

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Redis中Redisson布隆过滤器的学习

简介

本文基于Spring Boot 2.6.6、redisson 3.16.0简单分析Redisson布隆过滤器的使用。

布隆过滤器是一个非常长的二进制向量和一系列随机哈希函数的组合,可用于检索一个元素是否存在;

使用场景如下:

  • 解决Redis缓存穿透问题;
  • 邮件过滤;

使用

  • 建立一个二进制向量,所有位设置0;
  • 选择K个散列函数,用于对元素进行K次散列,计算向量的位下标;
  • 添加元素:将K个散列函数作用于该元素,生成K个值作为位下标,将向量的对应位设置为1;
  • 检索元素:将K个散列函数作用于该元素,生成K个值作为位下标,若向量的对应位都是1,则说明该元素可能存在;否则,该元素肯定不存在;

Demo

依赖

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
    <exclusions>
        <exclusion>
            <groupId>io.lettuce</groupId>
            <artifactId>lettuce-core</artifactId>
        </exclusion>
    </exclusions>
</dependency>
<dependency>
    <groupId>redis.clients</groupId>
    <artifactId>jedis</artifactId>
</dependency>
<dependency>
    <groupId>org.redisson</groupId>
    <artifactId>redisson</artifactId>
    <version>3.16.0</version>
</dependency>

测试代码

public class BloomFilterDemo {

    public static void main(String[] args) {
        Config config = new Config();
        config.useSingleServer().setAddress("redis://127.0.0.1:6379");
        RedissonClient redissonClient = Redisson.create(config);
        RBloomFilter<String> bloomFilter = redissonClient.getBloomFilter("bloom-filter");
        // 初始化布隆过滤器
        bloomFilter.tryInit(200, 0.01);

        List<String> elements = new ArrayList<>();
        for (int i = 0; i < 200; i++) {
            elements.add(UUID.randomUUID().toString());
        }

        // 向布隆过滤器中添加内容
        init(bloomFilter, elements);
        // 测试检索效果
        test(bloomFilter, elements);

        redissonClient.shutdown();
    }

    public static void init(RBloomFilter<String> bloomFilter, List<String> elements) {
        for (int i = 0; i < elements.size(); i++) {
            if (i % 2 == 0) {
                bloomFilter.add(elements.get(i));
            }
        }
    }

    public static void test(RBloomFilter<String> bloomFilter, List<String> elements) {
        int counter = 0;
        for (String element : elements) {
            if (bloomFilter.contains(element)) {
                counter++;
            }
        }
        System.out.println(counter);
    }
}

简析

初始化

布隆过滤器的初始化方法tryInit有两个参数:

  • expectedInsertions:预期的插入元素数量;
  • falseProbability:预期的错误率;

布隆过滤器可以明确元素不存在,但对于元素存在的判断是存在错误率的;所以初始化时指定的这两个参数会决定布隆过滤器的向量长度和散列函数的个数;
RedissonBloomFilter.tryInit方法代码如下:

public boolean tryInit(long expectedInsertions, double falseProbability) {
    if (falseProbability > 1) {
        throw new IllegalArgumentException("Bloom filter false probability can't be greater than 1");
    }
    if (falseProbability < 0) {
        throw new IllegalArgumentException("Bloom filter false probability can't be negative");
    }

    // 根据元素个数和错误率计算得到向量长度
    size = optimalNumOfBits(expectedInsertions, falseProbability);
    if (size == 0) {
        throw new IllegalArgumentException("Bloom filter calculated size is " + size);
    }
    if (size > getMaxSize()) {
        throw new IllegalArgumentException("Bloom filter size can't be greater than " + getMaxSize() + ". But calculated size is " + size);
    }
    // 根据元素个数和向量长度计算得到散列函数的个数
    hashIterations = optimalNumOfHashFunctions(expectedInsertions, size);

    CommandBatchService executorService = new CommandBatchService(commandExecutor);
    executorService.evalReadAsync(configName, codec, RedisCommands.EVAL_VOID,
            "local size = redis.call('hget', KEYS[1], 'size');" +
                    "local hashIterations = redis.call('hget', KEYS[1], 'hashIterations');" +
                    "assert(size == false and hashIterations == false, 'Bloom filter config has been changed')",
                    Arrays.<Object>asList(configName), size, hashIterations);
    executorService.writeAsync(configName, StringCodec.INSTANCE,
                                            new RedisCommand<Void>("HMSET", new VoidReplayConvertor()), configName,
            "size", size, "hashIterations", hashIterations,
            "expectedInsertions", expectedInsertions, "falseProbability", BigDecimal.valueOf(falseProbability).toPlainString());
    try {
        executorService.execute();
    } catch (RedisException e) {
        if (e.getMessage() == null || !e.getMessage().contains("Bloom filter config has been changed")) {
            throw e;
        }
        readConfig();
        return false;
    }

    return true;
}

private long optimalNumOfBits(long n, double p) {
    if (p == 0) {
        p = Double.MIN_VALUE;
    }
    return (long) (-n * Math.log(p) / (Math.log(2) * Math.log(2)));
}

private int optimalNumOfHashFunctions(long n, long m) {
    return Math.max(1, (int) Math.round((double) m / n * Math.log(2)));
}

添加元素

向布隆过滤器中添加元素时,先使用一系列散列函数根据元素得到K个位下标,然后将向量中位下标对应的位设置为1;
RedissonBloomFilter.add方法代码如下:

public boolean add(T object) {
    // 根据带插入元素得到两个long类型散列值
    long[] hashes = hash(object);

    while (true) {
        if (size == 0) {
            readConfig();
        }

        int hashIterations = this.hashIterations;
        long size = this.size;

        // 得到位下标数组
        // 以两个散列值根据指定策略生成hashIterations个散列值,从而得到位下标
        long[] indexes = hash(hashes[0], hashes[1], hashIterations, size);

        CommandBatchService executorService = new CommandBatchService(commandExecutor);
        addConfigCheck(hashIterations, size, executorService);
        RBitSetAsync bs = createBitSet(executorService);
        for (int i = 0; i < indexes.length; i++) {
            // 将位下标对应位设置1
            bs.setAsync(indexes[i]);
        }
        try {
            List<Boolean> result = (List<Boolean>) executorService.execute().getResponses();

            for (Boolean val : result.subList(1, result.size()-1)) {
                if (!val) {
                    // 元素添加成功
                    return true;
                }
            }
            // 元素已存在
            return false;
        } catch (RedisException e) {
            if (e.getMessage() == null || !e.getMessage().contains("Bloom filter config has been changed")) {
                throw e;
            }
        }
    }
}

private long[] hash(Object object) {
    ByteBuf state = encode(object);
    try {
        return Hash.hash128(state);
    } finally {
        state.release();
    }
}

private long[] hash(long hash1, long hash2, int iterations, long size) {
    long[] indexes = new long[iterations];
    long hash = hash1;
    for (int i = 0; i < iterations; i++) {
        indexes[i] = (hash & Long.MAX_VALUE) % size;
        // 散列函数的实现方式
        if (i % 2 == 0) {
            // 新散列值
            hash += hash2;
        } else {
            // 新散列值
            hash += hash1;
        }
    }
    return indexes;
}

hash(long hash1, long hash2, int iterations, long size)方法中,利用根据元素得到的两个散列值,生成一系列散列函数,然后得到位下标数组;

检索元素

检索布隆过滤器中是否存在指定元素时,先使用一系列散列函数根据元素得到K个位下标,然后判断向量中位下标对应的位是否为1,若存在一个不为1,则该元素不存在;否则认为存在;
RedissonBloomFilter.contains方法代码如下:

public boolean contains(T object) {
    // 根据带插入元素得到两个long类型散列值
    long[] hashes = hash(object);

    while (true) {
        if (size == 0) {
            readConfig();
        }

        int hashIterations = this.hashIterations;
        long size = this.size;

        // 得到位下标数组
        // 以两个散列值根据指定策略生成hashIterations个散列值,从而得到位下标
        long[] indexes = hash(hashes[0], hashes[1], hashIterations, size);

        CommandBatchService executorService = new CommandBatchService(commandExecutor);
        addConfigCheck(hashIterations, size, executorService);
        RBitSetAsync bs = createBitSet(executorService);
        for (int i = 0; i < indexes.length; i++) {
            // 获取位下标对应位的值
            bs.getAsync(indexes[i]);
        }
        try {
            List<Boolean> result = (List<Boolean>) executorService.execute().getResponses();

            for (Boolean val : result.subList(1, result.size()-1)) {
                if (!val) {
                    // 若存在不为1的位,则认为元素不存在
                    return false;
                }
            }
            // 都为1,则认为元素存在
            return true;
        } catch (RedisException e) {
            if (e.getMessage() == null || !e.getMessage().contains("Bloom filter config has been changed")) {
                throw e;
            }
        }
    }
}

到此这篇关于Redis中Redisson布隆过滤器的学习的文章就介绍到这了,更多相关Redis Redisson布隆过滤器内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Redis中Redisson布隆过滤器的学习

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Redis中Bloomfilter布隆过滤器的学习

布隆过滤器是一个非常长的二进制向量和一系列随机哈希函数的组合,可用于检索一个元素是否存在,本文就详细的介绍一下Bloomfilter布隆过滤器,具有一定的参考价值,感兴趣的可以了解一下
2022-12-14

Redis中Bloom filter布隆过滤器的学习

目录1.概念2.guava实现2.1.依赖2.2.初始化布隆过滤器2.3.布隆过滤器2.4.添加元素或者判断是否存在3.Redisson实现3.1.依赖3.2.注入或测试1.概念​ 布隆过滤器是一个高空间利用率的概率性数据结构,主要目的是
2022-12-14

redis的set get[布隆过滤器]

布隆过滤器是什么 在做JAVA项目时候用到这个(参考地址),今天咱们就讲一讲 名字就跟每个定律一样,你问为什么叫牛顿定律,因为是牛顿发明或者发现的。 他能做什么?它是将一个二进制向量和函数映射,布隆过滤器可以用在检测元素是否存在某个集合或者用于快速检索中。 缺
redis的set get[布隆过滤器]
2018-08-21

redis布隆过滤器的作用是什么

Redis布隆过滤器是一种数据结构,用于快速判断一个元素是否存在于一个集合中。它可以高效地判断一个元素是否可能在集合中,但无法确保元素一定在集合中或者排除元素已经在集合中。布隆过滤器通常用于减少对数据库的查询次数,节省资源和时间。常见的应用
redis布隆过滤器的作用是什么
2024-04-09

基于php+redis实现布隆过滤器

本文详细介绍了基于PHP+Redis实现布隆过滤器的方法,该过滤器是一种概率性数据结构,用于快速判断元素是否存在集合中。Redis提供原生布隆过滤器支持,可以使用自定义PHP类简化其使用。布隆过滤器具有高空间效率、快速查找、近似查询和可扩展性等优势,但也有误报、不可变和不支持删除的局限性。通过利用Redis布隆过滤器,开发人员可以优化PHP应用程序的集合成员资格测试和存储需求。
基于php+redis实现布隆过滤器
2024-04-02

SpringBoot+Redis如何实现布隆过滤器

小编给大家分享一下SpringBoot+Redis如何实现布隆过滤器,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!简述关于布隆过滤器的详细介绍,我在这里就不再赘述一遍了我们首先知道:BloomFilter使用长度为m bi
2023-06-29

redis布隆过滤器的工作原理是什么

Redis布隆过滤器是一种数据结构,用于快速判断一个元素是否存在于一个集合中。它基于位数组和多个哈希函数实现。工作原理如下:初始化:布隆过滤器包含一个位数组,所有位都初始化为0。同时,需要选择合适数量的哈希函数和哈希函数的种子。添加元素
redis布隆过滤器的工作原理是什么
2024-04-09

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录