我的编程空间,编程开发者的网络收藏夹
学习永远不晚

运营数据分析体系,该怎么搭建?

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

运营数据分析体系,该怎么搭建?

从运营的工作特点说起

运营工作,和销售、供应有明显区别。比如销售工作,核心关注收入、利润、转化率,能赚钱就行。比如供应,核心关注商品供应、库存周转、成本控制,不缺货,少积压就行。这些工作的目标聚焦,流程清晰。

而运营工作目标多,形式灵活。比如做活动运营,可能是直接促进销售转化,也有可能是拉拉用户活跃,保持平台人气。比如做社群运营,可能是纯粹为了把公域用户先捞回来,也能基于社群做服务或者销售转化。

更有可能,比如做1次大型活动,要先做引流推广,再转化,再做售后支持,一场活动下来,各个类型工作都有关联。这种工作特点,使得做运营数据分析的时候,得特别注意以下四点:

第一:清晰目标

运营工作目标多,因此事前清晰目标很重要。清晰目标才能选择合适的方案,配置恰当的资源,事后分析也才有方向。

运营常见的目标设定方式有三种:

达成绝对值目标,比如:在5月内,实现总用户100万

达成比例/比例类目标,比如:5月份全月,交易转化率从10%提升到15%

达成增量目标,比如:在5月份内,较自然增长额外拉动交易3000万

这里目标1、2都可以直接用数据观察,但目标3涉及“自然增长”的定义,必须事前谈清楚。不然事后很可能无法分析。常见的自然增长定义有3种(如下图所示)每一种都各有利弊,并没有一个完美方案,因此事前一定要和老板、各部门达成共识。

这里经常有人偷懒,在事前不设量化目标,只是笼统说一句:“为提升业绩”、“为拉升用户活跃”……企图在事后,通过数据分析的手段来区分哪些是自然增长,哪些是活动效果。结果经常区分不出来,搬石头砸自己的脚,大家要引以为戒。

第二:梳理指标

运营工作形式灵活,因此经常需要根据实际工作流程,来设定数据指标。一来方便监控执行进度,二来在复盘的时候,好观察哪个环节出了问题,便于追查原因,寻找机会。

比如,运营部门上一个“签到领福利”的活动,每月打卡7/14/21次可以得奖励,奖励包含优惠券,希望同时刺激用户活跃+转化。此时要把下面这些过程指标都梳理出来,方便后续追踪数据,复盘效果(如下图所示):

从什么渠道输出信息

一共吸引多少用户参与

每个阶段有多少人完成

领取奖励后多少人消费

注意,如果有连续开展的运营活动,需要持续追踪用户参与情况。比如上边说的打卡签到,在持续n个月以后,会有相当数据积累,可以观察:

整体影响到用户是否增加

有多少用户重复参与

有多少用户从不参与

不同的数据走势,可以得出不同结论(如下图),结合数据走势,可以更好地判断:一个运营手段应持续做下去,还是做出调整。

第三:打好标签

影响运营效果的因素很多,推广渠道、推广文案、活动形式、操作步骤、转化商品、优惠力度等等,都会影响到效果好坏。因此需要在开始干活之前,先对推广文案、推荐商品、操作流程等关键因素,打好标签,才好在事后进行分析(如下图)

除了单个标签外,还可以对运营措施整体打标签,对整体情况进行判断。比如提升用户活跃,领红包、签到、大转盘、积分榜等等好几种手段都可以用,每种手段都可以配置奖励,此时就可以利用标签,把各种手段分组对比,从而了解每一种手段的效果范围,为后续运营提供经验积累(如下图)。

第四:按图索骥

如果做好了前三步,在做运营数据分析的时候,难度就非常小了。

对比目标,看完成了多少,看投入是否超支,先下个判断:本次做得好/不好

对比同样目标下,历次运营活动的效果,看本次属于:上、中、下什么水平

检查过程指标,看看引流→承接→转化,哪个环节有问题

对比不同标签下转化效果差异,看哪种手段好用/不好用

这样就能输出结论了。

在工作中,经常看到运营分析没结论,是因为:

目标不清晰,或者干脆没目标,光有一堆数据,没结论

过程指标收集少,只知道最后转化不行,不知道为啥不行

缺少标签,无法把运营手法量化,无法评价好坏

做好准备,才有好的分析结果,切记切记。

小结

综上可见,想要做好运营分析,需要掌握数据指标体系梳理、标签制作、分析思路等综合能力,才能适应各种场景的要求。我

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

运营数据分析体系,该怎么搭建?

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

运营数据分析体系,该怎么搭建?

运营工作,和销售、供应有明显区别。比如销售工作,核心关注收入、利润、转化率,能赚钱就行。比如供应,核心关注商品供应、库存周转、成本控制,不缺货,少积压就行。这些工作的目标聚焦,流程清晰。

运营策略分析体系,该如何搭建

每年4季度,很多企业都会密集地上线运营活动,相关的分析需求也大量增加。这就带来了新问题:当一堆运营活动重叠的时候,到底该咋分析?今天系统讲解一下。

运营数据分析体系,最全搭建攻略来了!

运营工作形式灵活,因此经常需要根据实际工作流程,来设定数据指标。一来方便监控执行进度,二来在复盘的时候,好观察哪个环节出了问题,便于追查原因,寻找机会。

数据监控体系是什么?该怎么搭建?

理论上监督和控制也可以不用数据,比如传统的车间主任、生产队长、监考老师,都是一线现场监督与控制。

我搭建了一个好用的数据运营体系

为什么会这样?因为从本质上看,运营是个辅助性工作。理论上,如果产品力足够强大,商品天下无敌,那根本没运营啥事。——用户自己就抢着买到断货,玩得乐不思蜀了,运营啥运营。

我用三步,搭建一个高效的运营分析体系

一提到内容运营,很多同学本能想到公众号、微博、抖音。于是数据指标是张口就来:粉丝量、新增粉丝量、常读粉丝量、阅读数、打开率、转发率……越说越起劲,喉咙里那句:“今天阅读低了,要搞高”几乎要破口而出。

从0到1,搭建经营分析体系

经营分析最大痛点,在于很多人做的“既不经营,也没啥分析”,基本就是按:GMV=UV*转化率*客单价的公式,把KPI一拆,然后开始表演:“本月目标未达成,原因是转化率低了,要搞高。”并且很多公司的经营分析报告是有模板的,美其名曰:“历史传承”

一文看懂:如何搭建经营分析体系

今天为大家分享的,是数据分析的经典分枝——经营分析。经营分析非常有历史了,早在“数据分析”这个名词火起来之前就已经存在了。今天一起来看看。

数据分析师应该如何构建指标体系

在互联网行业中,对指标的一般定义为:指标,是反映某种事物或现象,描述在一定时间和条件下的规模、程度、比例、结构等概念,通常由指标名称和指标数值组成。

我用了五步,搭建一个数据分析体系

企业有部门分工,因此第一步要认准:我在为哪个部门服务。这非常关键!因为即使同一个问题,不同部门的关注点会不同。同样是销售问题,如果是销售部看,关注的是每一支销售队伍完成率、进度、质量。如果是供应链看,那关注的就是总量、各产品数量、需求高峰期

运营数据分析,怎么做才有深度

这是很多公司对数据分析师的要求。然而到底怎么做才有深度?除了罗列购买人数、购买率等数据,到底还能分析啥?今天结合运营的例子,具体讲解下。

活动效果评估体系,该怎么搭建?

在分析这些指标的时候,要注意先后顺序。比如有关新用户注册问题。要先看各个用户来源渠道的投放力度,活动是否及时上架,何时与投放结合。之后才是深入分析文案、活动礼品、领取后行为等等。​

基于数据分析给出运营建议,咋整?

为什么不是低了要搞高,是因为很多业务都是周期性波动的,比如休闲类消费就是周末高,平时低;B2B交易就是工作日高,节假日低。

数据分析报告,【建议】部分该怎么写?

当然,这些都建立在一个基本前提上:你得能分清看到的是结果数据还是过程数据。曾经有个同学问陈老师:“老师,我要如何提升策略性思考能力,你看我们现在明明一切做得很好,可转化率就是上不去,为啥嗯?”

企业该如何搭建大数据分析平台

本篇文章为大家展示了企业该如何搭建大数据分析平台,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。  在如今这个高速发展的信息化时代,一切都在转化为数据,一切都在被数据所衡量,可以采用一些BI工具来搭建
2023-06-02

如何搭建数据库自动化运维体系

需求背景:随着业务的增长、对运维效率和质量的要求不断提高,对自动化运维体系的需求也不断增强。目前笔者服务的很多中大型企业客户,运维其实还停留在“刀耕火种”的原始状态。这里所说的“刀”和“火”就是运维人员的远程客户端,例如 xshell 和Windows 远程桌

	如何搭建数据库自动化运维体系
2014-05-21

数据中台虚火?数据管控体系应该这么搭

数据资产价值变现,如同企业的业务运营,是一个永续不断的过程。

怎么使用Python+ChatGPT进行游戏运营数据分析

本篇内容介绍了“怎么使用Python+ChatGPT进行游戏运营数据分析”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!数据您的团队已经为您提
2023-07-05

经营分析、数据分析、财务分析有什么关系?

从去年开始,经营分析迎来了一波文艺复兴,虽然并不是啥好事。企业经营压力加大,便开始加强对业务绩效的考核,加强对成本的控制。这个任务,有的公司交给数据分析师来办,有的交给财务,有的则由专门经营管理部承接。

一个完整的数据分析体系,该长啥样?

在整个体系中,经营分析是直接服务于战略级决策的。在最高管理层做决策的时候,更聚焦于宏观的问题,比如整体目标达成,外部环境变化,内部举措效果。而不是陷在琐碎的业务细节里。

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录