我的编程空间,编程开发者的网络收藏夹
学习永远不晚

关于Kafka大数据环境中的应用解析

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

关于Kafka大数据环境中的应用解析

  欢迎各位阅读本篇,Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。本篇文章讲述了关于Kafka大数据环境中的应用解析,编程学习网教育平台提醒各位:本篇文章纯干货~因此大家一定要认真阅读本篇文章哦!

关于Kafka大数据环境中的应用解析_大数据应用_数据中心_大数据_编程学习网教育

  我们生活在一个数据爆炸的时代,数据的巨量增长给我们的业务处理带来了压力,同时巨量的数据也给我们带来了十分可观的财富。随着大数据将各个行业用户、运营商、服务商的数据整合进大数据环境,或用户取用大数据环境中海量的数据,业务平台间的消息处理将变得尤为复杂。如何高效地采集、使用数据,如何减轻各业务系统的压力,也变得越来越突出。在早期的系统实现时,业务比较简单。即便是数据量、业务量比较大,大数据环境也能做出处理。但是随着接入的系统增多,数据量、业务量增大,大数据环境、业务系统都可出现一定的瓶颈。下面我们看几个场景。

  场景一:我们开发过一个设备信息挖掘平台。这个平台需要实时将采集互联网关采集到的路由节点的状态信息存入数据中心。通常一个网关一次需要上报几十甚至几百个变化的路由信息。全区有几万个这种互联网关。当信息采集平台将这些变化的数据信息写入或更新到数据库时候,会给数据库代理非常大的压力,甚至可以直接将数据库搞挂掉。这就对我们的数据采集系统提出了很高的要求。如何稳定高效地把消息更新到数据库这一要求摆了出来。

  场景二:数据中心处理过的数据需要实时共享给几个不同的机构。我们常采用的方法是将数据批量存放在数据采集机,分支机构定时来采集;或是分支机构通过JDBC、RPC、http或其他机制实时从数据中心获取数据。这两种方式都存在一定的问题,前者在于实时性不足,还牵涉到数据完整性问题;后者在于,当数据量很大的时候,多个分支机构同时读取数据,会对数据中心的造成很大的压力,也造成很大的资源浪费。

  为了解决以上场景提出的问题,我们需要这样一个消息系统:

  缓冲能力,系统可以提供一个缓冲区,当有大量数据来临时,系统可以将数据可靠的缓冲起来,供后续模块处理;

  订阅、分发能力,系统可以接收消息可靠的缓存下来,也可以将可靠缓存的数据发布给使用者。

  这就要我们找一个高吞吐的、能满足订阅发布需求的系统。

  Kafka是一个分布式的、高吞吐的、基于发布/订阅的消息系统。利用kafka技术可以在廉价PC Server上搭建起大规模的消息系统。Kafka具有消息持久化、高吞吐、分布式、实时、低耦合、多客户端支持、数据可靠等诸多特点,适合在线和离线的消息处理。

  使用kafka解决我们上述提到的问题。

使用kafka解决我们上述提到的问题。

  互联网关采集到变化的路由信息,通过kafka的producer将归集后的信息批量传入kafka。Kafka按照接收顺序对归集的信息进行缓存,并加入待消费队列。Kafka的consumer读取队列信息,并一定的处理策略,将获取的信息更新到数据库。完成数据到数据中心的存储。

  数据中心的数据需要共享时,kafka的producer先从数据中心读取数据,然后传入kafka缓存并加入待消费队列。各分支结构作为数据消费者,启动消费动作,从kafka队列读取数据,并对获取的数据进行处理。

  Kafka生产的代码如下:

  public void produce(){

  //生产消息预处理

  produceInfoProcess();

  pro.send(ProducerRecord,new Callback(){

  @Override

  onCompletion() {

  if (metadata == null) {

  // 发送失败

  failedSend();

  } else {

  //发送成功!"

  successedSend();

  }

  }

  });

  }

  消息生产者根据需求,灵活定义produceInfoProcess()方法,对相关数据进行处理。并依据数据发布到kafka的情况,处理回调机制。在数据发送失败时,定义failedSend()方法;当数据发送成功时,定义successedSend()方法。

  Kafka消费的代码如下:

  public void consumer() {

  //配置文件

  properties();

  //获取当前数据的迭代器

  iterator = stream.iterator();

  while (iterator.hasNext()) {

  //取出消息

  MessageAndMetadata next = iterator.next();

  messageProcess();

  }

  }

  Kafka消费者会和kafka集群建立一个连接。从kafka读取数据,调用messageProcess()方法,对获取的数据灵活处理。

  结论

  Kafka的高吞吐能力、缓存机制能有效的解决高峰流量冲击问题。实践表明,在未将kafka引入系统前,当互联网关发送的数据量较大时,往往会挂起关系数据库,数据常常丢失。在引入kafka后,更新程序能够结合能力自主处理消息,不会引起数据丢失,关系型数据库的压力波动不会发生过于显著的变化,不会出现数据库挂起锁死现象。

  依靠kafka的订阅分发机制,实现了一次发布,各分支依据需求自主订阅的功能。避免了各分支机构直接向数据中心请求数据,或者数据中心依次批量向分支机构传输数据以致实时性不足的情况。kafka提高了实时性,减轻了数据中心的压力,提高了效率。

  分享:Kafka相关术语介绍

  Broker

  Kafka集群包含一个或多个服务器,这种服务器被称为broker

  Topic

  每条发布到Kafka集群的消息都有一个类别,这个类别被称为Topic。(物理上不同Topic的消息分开存储,逻辑上一个Topic的消息虽然保存于一个或多个broker上但用户只需指定消息的Topic即可生产或消费数据而不必关心数据存于何处)

  Partition

  Partition是物理上的概念,每个Topic包含一个或多个Partition.

  Producer

  负责发布消息到Kafka broker

  Consumer

  消息消费者,向Kafka broker读取消息的客户端。

  Consumer Group

  每个Consumer属于一个特定的Consumer Group(可为每个Consumer指定group name,若不指定group name则属于默认的group)。

可为每个Consumer指定group name,若不指定group name则属于默认的group

  小结:Kafka的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群机来提供实时的消费。不妨关注编程学习网教育平台,在这个学习知识的天堂中,您肯定会有意想不到的收获的!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

关于Kafka大数据环境中的应用解析

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

关于Kafka大数据环境中的应用解析

欢迎各位阅读本篇,Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。本篇文章讲述了关于Kafka大数据环境中的应用解析,编程学习网教育平台提醒各位:本篇文章纯干货~因此大家一定要认真阅读本篇文章哦!
关于Kafka大数据环境中的应用解析
2024-04-23

了解用于数据中心的环境温度传感器

环境温度传感器可以帮助您跟踪数据中心的温度、湿度和气流等环境因素,从而避免停机。

如何搭建属于你的专业Python大数据分析环境

数据科学通常被描述为统计和编程的交集。在本文中,我们讲介绍如何在你的电脑上设置立专业数据科学环境,这样你就可以开始动手实践与流行的数据科学库!

关于 Python 数据分析的 15 个 NumPy 应用

本文专为那些希望深入了解并掌握NumPy核心功能的数据分析新手设计。我们将通过10个实用的应用示例,带你从基础操作到一些高级技巧,让你的数据分析之旅更加顺畅。

关于大数据服务应该了解的一切

大数据是一个在商业和技术领域广泛使用的术语。简而言之,这是从各种来源获取极大量复杂数据,并对其进行分析以发现模式、趋势、问题并提供获得有用见解的机会的过程。

解析|大数据处理的五大关键技术及其应用

大数据因为其特点被应用在各个领域,在我国,大数据将重点应用于以下三大领域:商业智能 、政府决策、公共服务。但是大数据的处理流程是什么呢?本文详细的介绍了大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用以及七个建

Linux环境中利用Python脚本进行大数据分析与处理

Linux环境中利用Python脚本进行大数据分析与处理导言:随着大数据时代的到来,数据分析与处理的需求也日益增长。在Linux环境中,利用Python脚本进行大数据分析与处理是一种高效、灵活、可扩展的方式。本文将介绍如何在Linux环境中
2023-10-22

数据分析对于准备应对财务困境的企业至关重要

数据分析已经成为现代企业运营战略的一个非常重要的方面,而利用大数据的最重要方法之一是财务管理。

Python中关于数据采集和解析是怎样的

本篇文章为大家展示了Python中关于数据采集和解析是怎样的,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。我们已经了解到了开发一个爬虫需要做的工作以及一些常见的问题,下面我们给出一个爬虫开发相关技术
2023-06-02

数据中心管理者应该考虑的五个关键环境问题

研究表明,如今的数据中心用电量约占全球用电量的1%。随着对数据中心的需求不断增长,许多数据中心管理人员正在寻找将可持续性举措以纳入其业务增长战略的方法。

企业数字化转型,关于数据应用的三点分析

随着数字技术的飞速发展,数据的种类和规模正在高速增长,大数据时代来临了。数据已从简单的需要处理的对象,变成一种十分重要的资源了。

MySQL MVCC 原理解析及其在高并发环境中的应用

MySQL MVCC 原理解析及其在高并发环境中的应用摘要:随着互联网的迅猛发展,高并发访问成为了数据库设计和优化的重要课题。本文将介绍MySQL数据库中的MVCC(多版本并发控制)原理,并探讨它在高并发环境中的应用。同时,为了更好地理解M
2023-10-22

Sphinx搜索在大数据场景下的应用与挑战(大数据环境中Sphinx搜索如何发挥作用?)

Sphinx搜索在大数据场景中以其快速搜索、相关性排名和可扩展性而著称。应用场景包括快速搜索、相关性排名、分布式部署和实时搜索。挑战在于数据量大、索引更新、查询复杂度和资源消耗。通过硬件优化、索引结构设计、查询优化、分布式部署和实时索引,可以在大数据环境中有效利用Sphinx搜索,提供快速、相关和可扩展的搜索体验。
Sphinx搜索在大数据场景下的应用与挑战(大数据环境中Sphinx搜索如何发挥作用?)
2024-04-02

MySQL在大数据环境下的应用与优化项目经验总结

MySQL在大数据环境下的应用与优化项目经验总结随着大数据时代的到来,越来越多的企业和组织开始面临海量数据的存储、处理和分析的挑战。MySQL作为一种开源的关系型数据库管理系统,其在大数据环境下的应用和优化成为了许多项目的重要一环。本文将总
MySQL在大数据环境下的应用与优化项目经验总结
2023-11-03

深入解析MongoDB在大数据场景中的应用实践

深入解析MongoDB在大数据场景中的应用实践摘要:随着大数据时代的到来,数据规模不断增大,对数据库存储和处理的需求也愈发迫切。MongoDB作为一种非关系型数据库,以其高可扩展性和灵活的数据模型在大数据场景中得到了广泛应用。本文将深入分析
深入解析MongoDB在大数据场景中的应用实践
2023-11-03

企业如何在疫情环境中使用大数据分析来协调业务?

当冠状病毒疫情在2020年初在全球爆发时,许多企业和政府部门发现处于一个前所未有的危机中,他们努力在适应和调整。

编程热搜

  • Mysql分表查询海量数据和解决方案
    众所周知数据库的管理往往离不开各种的数据优化,而要想进行优化通常我们都是通过参数来完成优化的。那么到底这些参数有哪些呢?为此在本篇文章中编程学习网笔者就为大家简单介绍MySQL,以供大家参考参考,希望能帮助到大家。以上就是关于大数据的知识点了。喜欢的可以分享给你的朋友,也可以点赞噢~更多内容,就在编程学习网!
    Mysql分表查询海量数据和解决方案
  • 大数据的妙用及17年趋势
    2017年,支持大量结构化和非结构化数据的系统将继续增长。市场需要数据平台来帮助数据管理人员管理和保护大数据,同时允许最终用户进行数据分析。这些系统将逐步成熟,在企业内部的IT系统中更好地运行。所以,我们更要了解大数据!互联网普及使得网民的行为更加多元化,通过互联网产生的数据发展更加迅猛,更具代表性。互联网世界中的商品信息、社交媒体中的图片、文本信息以及视频网站的视频信息,互联网世界中的人与人交互信息、位置信息等,都已经成为大数据的最重要也是增长最快的来源。大家都了解到了吗!更多内容就在编程学习网哟
    大数据的妙用及17年趋势
  • 5G大数据时代空降来袭
    欢迎各位阅读本篇文章,本文主要讲了5G大数据时代。如今 5G 概念已不再陌生,按照行业认同的说法:2017年至2018年 5G 将在国内开始有序测试,2019年进行预商用。工信部之前已表示,中国将在2020年启动 5G 商用。编程学习网教育平台提醒各位:本篇文章纯干货~因此大家一定要认真阅读本篇文章哦!
    5G大数据时代空降来袭
  • es详解-原理-从图解构筑对es原理的初步认知
    在学习ElasticSearch原理时,我推荐你先通过官方博客中的一篇图解文章(虽然是基于2.x版本)来构筑对ES的初步认知(这种认识是体系上的快速认知)。ES详解 - 原理:从图解构筑对ES原理的初步认知前言图解ElasticSearch图解LuceneSegmentInverted IndexStored Fiel
    es详解-原理-从图解构筑对es原理的初步认知
  • elasticsearch-wrapperquery
    在工作中遇到ElasticSearch版本升级时出现Java High Level接口变更导致的兼容性问题: 之前使用的是2.4.x,考虑性能和功能的增强,需要更换为6.4.x; 2.4.x中我们使用DSL语句直接查询(数据的不确定性和方便动态建立查询规则等因素),而新的ES Java 高阶API中去掉了相关接口的支持
    elasticsearch-wrapperquery
  • 学习大数据营销思维(下)
    编程学习网: 其实,通过上面的介绍,我们知道苹果通过各类产品与服务销售相互促进以理及薄利多销的方式来盈利第二种战略联盟类型是合作方的共同赢利。苹果公司打造了一个参与方共同受益的业务系统。
    学习大数据营销思维(下)
  • 纯干货:HLS 协议详解及优化技术全面解析
    编程学习网:HLS (HTTP Live Streaming), 是由 Apple 公司实现的基于 HTTP 的媒体流传输协议。他跟 DASH 协议的原理非常类似,通过将整条流切割成一个小的可以通过 HTTP 下载的媒体文件,然后提供一个配套的媒体列表文件给客户端,让客户端顺序地拉取这些媒体文件播放, 来实现看上去是在播放一条流的效果。HLS 目前广泛地应用于点播和直播领域。
    纯干货:HLS 协议详解及优化技术全面解析
  • 关于Python 代码全面分析
    欢迎各位阅读本篇,Python(KK 英语发音:/ˈpaɪθən/)是一种面向对象、直译式计算机程序设计语言。本篇文章讲述了关于Python 代码全面分析。
    关于Python 代码全面分析
  • es详解-原理-es原理之索引文档流程详解
    ElasticSearch中最重要原理是文档的索引和文档的读取,本文带你理解ES文档的索引过程。ES详解 - 原理:ES原理之索引文档流程详解文档索引步骤顺序单个文档多个文档文档索引过程详解整体的索引流程分步骤看数据持久化过程深入ElasticSearch索引文档的实现机制写操作的关键点Lucene的写Elastics
    es详解-原理-es原理之索引文档流程详解
  • 五大“网管”必备的网络数据分析工具
    是不是在为如何分析统计网络数据和流量烦恼呢?想不想监控、运维、排障轻松一些?下面给大家提供一些免费网络分析工具,以帮助大家更好的掌控自己的网络!编程学习网教育
    五大“网管”必备的网络数据分析工具

目录