我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python进阶之协程详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python进阶之协程详解

协程

协程(co-routine,又称微线程)是一种多方协同的工作方式。当前执行者在某个时刻主动让出(yield)控制流,并记住自身当前的状态,以便在控制流返回时能从上次让出的位置恢复(resume)执行。

简而言之,协程的核心思想就在于执行者对控制流的 “主动让出” 和 “恢复”。相对于,线程此类的 “抢占式调度” 而言,协程是一种 “协作式调度” 方式。

在这里插入图片描述

协程的应用场景

抢占式调度的缺点

在 I/O 密集型场景中,抢占式调度的解决方案是 “异步 + 回调” 机制。

在这里插入图片描述

其存在的问题是,在某些场景中会使得整个程序的可读性非常差。以图片下载为例,图片服务中台提供了异步接口,发起者请求之后立即返回,图片服务此时给了发起者一个唯一标识 ID,等图片服务完成下载后把结果放到一个消息队列,此时需要发起者不断消费这个 MQ 才能拿到下载是否完成的结果。

在这里插入图片描述

可见,整体的逻辑被拆分为了好几个部分,各个子部分都会存在状态的迁移,日后必然是 BUG 的高发地。

在这里插入图片描述

用户态协同调度的优势

而随着网络技术的发展和高并发要求,协程所能够提供的用户态协同调度机制的优势,在网络操作、文件操作、数据库操作、消息队列操作等重 I/O 操作场景中逐渐被挖掘。

在这里插入图片描述

协程将 I/O 的处理权从内核态的操作系统交还给用户态的程序自身。用户态程序在执行 I/O 时,主动的通过 yield(让出)CPU 的执行权给其他协程,多个协程之间处于平等、对称、合作的关系。

协程的运行原理

当程序运行时,操作系统会为每个程序分配一块同等大小的虚拟内存空间,并将程序的代码和所有静态数据加载到其中。然后,创建和初始化 Stack 存储,用于储存程序的局部变量,函数参数和返回地址;创建和初始化 Heap 内存;创建和初始化 I/O 相关的任务。当前期准备工作完成后,操作系统将 CPU 的控制权移交给新创建的进程,进程开始运行。

在这里插入图片描述

一个进程可以有一个或多个线程,同一进程中的多个线程将共享该进程中的全部系统资源,如:虚拟地址空间,文件描述符和信号处理等等。但同一进程中的多个线程有各自的调用栈和线程本地存储。

在这里插入图片描述

协程是一种比线程更加轻量级的存在,协程不是被操作系统内核所管理,而完全是由用户态程序所控制。协程与线程以及进程的关系如下图所示。可见,协程自身无法利用多核,需要配合进程来使用才可以在多核平台上发挥作用。

在这里插入图片描述

  • 协程之间的切换不需要涉及任何 System Call(系统调用)或任何阻塞调用。
  • 协程只在一个线程中执行,切换由用户态控制,而线程的阻塞状态是由操作系统内核来完成的,因此协程相比线程节省线程创建和切换的开销。
  • 协程中不存在同时写变量的冲突,因此,也就不需要用来守卫关键区块的同步性原语,比如:互斥锁、信号量等,并且不需要来自操作系统的支持。

协程通过 “挂起点” 来主动 yield(让出)CPU,并保存自身的状态,等候恢复。例如:首先在 funcA 函数中执行,运行一段时间后调用协程,协程开始执行,直到第一个挂起点,此后就像普通函数一样返回 funcA 函数。 funcA 函数执行一些代码后再次调用该协程,注意,协程这时就和普通函数不一样了。协程并不是从第一条指令开始执行而是从上一次的挂起点开始执行,执行一段时间后遇到第二个挂起点,这时协程再次像普通函数一样返回 funcA 函数,funcA 函数执行一段时间后整个程序结束。

在这里插入图片描述

可见,协程之所可以能够 “主动让出” 和 “被恢复”,是解析器在函数运行时堆栈中保存了其运行的 Context(上下文)。

在这里插入图片描述

Python 中的协程

Python 对协程的支持经历了多个版本:

  • Python2.x 对协程的支持比较有限,通过 yield 关键字支持的生成器实现了一部分协程的功能但不完全。
  • 第三方库 gevent 对协程有更好的支持。
  • Python3.4 中提供了 asyncio 模块。
  • Python3.5 中引入了 async/await 关键字。
  • Python3.6 中 asyncio 模块更加完善和稳定。
  • Python3.7 中内置了 async/await 关键字。

async/await 的示例程序:

import asyncio
from pathlib import Path
import logging
from urllib.request import urlopen, Request
import os
from time import time
import aiohttp
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
CODEFLEX_IMAGES_URLS = ['https://codeflex.co/wp-content/uploads/2021/01/pandas-dataframe-python-1024x512.png',
                        'https://codeflex.co/wp-content/uploads/2021/02/github-actions-deployment-to-eks-with-kustomize-1024x536.jpg',
                        'https://codeflex.co/wp-content/uploads/2021/02/boto3-s3-multipart-upload-1024x536.jpg',
                        'https://codeflex.co/wp-content/uploads/2018/02/kafka-cluster-architecture.jpg',
                        'https://codeflex.co/wp-content/uploads/2016/09/redis-cluster-topology.png']
async def download_image_async(session, dir, img_url):
    download_path = dir / os.path.basename(img_url)
    async with session.get(img_url) as response:
        with download_path.open('wb') as f:
            while True:
                # 在 async 函数中使用 await 关键字表示等待 task 执行完成,也就是等待 yeild 让出控制权。
                # 同时,asyncio 使用事件循环 event_loop 来实现整个过程。
                chunk = await response.content.read(512)
                if not chunk:
                    break
                f.write(chunk)
    logger.info('Downloaded: ' + img_url)
# 使用 async 关键字声明一个异步/协程函数。
# 调用该函数时,并不会立即运行,而是返回一个协程对象,后续在 event_loop 中执行。
async def main():
    images_dir = Path("codeflex_images")
    Path("codeflex_images").mkdir(parents=False, exist_ok=True)
    async with aiohttp.ClientSession() as session:
        tasks = [(download_image_async(session, images_dir, img_url)) for img_url in CODEFLEX_IMAGES_URLS]
        await asyncio.gather(*tasks, return_exceptions=True)
if __name__ == '__main__':
    start = time()
    # event_loop 事件循环充当管理者的角色,将控制权在几个协程函数之间切换。
    event_loop = asyncio.get_event_loop()
    try:
        event_loop.run_until_complete(main())
    finally:
        event_loop.close()
    logger.info('Download time: %s seconds', time() - start)

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注编程网的更多内容!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python进阶之协程详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python爬虫进阶之Beautiful Soup库详解

一、Beautiful Soup库简介 BeautifulSoup4 是一个 HTML/XML 的解析器,主要的功能是解析和提取 HTML/XML 的数据。和 lxml 库一样。 lxml 只会局部遍历,而 BeautifulSoup4 是
2022-06-02

python线程、进程和协程详解

引言解释器环境:python3.5.1我们都知道python网络编程的两大必学模块socket和socketserver,其中的socketserver是一个支持IO多路复用和多线程、多进程的模块。一般我们在socketserver服务端代
2022-06-04

Python进阶之网络编程

网络通信使用网络的目的把多方链接在一起,进行数据传递;网络编程就是,让不同电脑上的软件进行数据传递,即进程间通信;ip地址ip地址概念和作用IP地址是什么:比如192.168.1.1 这样的一些数字;ip地址的作用:用来在电脑中 标识唯一一
2023-01-31

python并发编程之多进程、多线程、异步和协程详解

最近学习python并发,于是对多进程、多线程、异步和协程做了个总结。 一、多线程多线程就是允许一个进程内存在多个控制权,以便让多个函数同时处于激活状态,从而让多个函数的操作同时运行。即使是单CPU的计算机,也可以通过不停地在不同线程的指令
2022-06-04

一文详解前端进阶之IntersectionObserver

这篇文章主要为大家介绍了前端进阶之IntersectionObserver示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-05-16

Python之函数进阶

一.形参的动态参数: 动态参数,用于参数不确定时用. 格式:def fun (*args)fun(args)1. 动态接收位置参数:动态参数必须在位置参数后.列子1.假如参数不确定时,如下的列子,每人饭量不一样,吃的种类不一样,此时用到动态
2023-01-30

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录