我的编程空间,编程开发者的网络收藏夹
学习永远不晚

香橙派5使用NPU加速yolov5的实时视频推理(二)

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

香橙派5使用NPU加速yolov5的实时视频推理(二)

三、将best.onnx转为RKNN格式

        这一步就需要我们进入到Ubuntu20.04系统中了,我的Ubuntu系统中已经下载好了anaconda,使用anaconda的好处就是可以方便的安装一些库,而且还可以利用conda来配置虚拟环境,做到环境与环境之间相互独立。

        对于我来说,使用了以下命令创建了一个名为rknn_ceshi的虚拟环境

conda create -n rknn_ceshi python=3.8

        之后,点击GitHub - rockchip-linux/rknn-toolkit2把整个项目给下载下来,解压后,我们进入刚刚创立虚拟环境下安装rknn-toolkit2。进入doc目录后,输入命令

pip install -r requirements_cp38-1.4.0.txt -i https://mirror.baidu.com/pypi/simple

        这里一定要带上百度的镜像源,要不然会报错,这个坑折磨了我整整3小时。

        安装完成后,出现下面的界面就说明已经安装好了

        接下来,我们进入packages文件夹,输入一下命令

pip install rknn_toolkit2-1.4.0_22dcfef4-cp38-cp38-linux_x86_64.whl

        出现以下界面,但是这里一定要注意,有一个超级大坑,超级大坑,超级大坑,后续我也是询问了大佬才解决的这个问题,这个地方安装的是rknn-toolkit2-1.4.0-22dcfef4!!!

        出现上面那个界面后,我们在终端输入python,再输入以下命令,如果没有报错,则证明我们的环境已经搭载好了

from rknn.api import RKNN

        接下来,我们要做的就是修改test.py里面的一些内容

        我第一次做的时候,报了错误,当时提示的是没有这个2-1.4.0-22dcfef4版本,我就跑到conda的环境包下,把所有的2-1.4.0-22dcfef4版本改成了2-1.4.0,才解决这个问题。

        可是当我这一次在执行这个文件的时候,就没报这个错误,直接就跑起来了。

        之后在我们的文件夹下出现了best.rknn这样就可以到香橙派5上部署了!!!

四、香橙派5部署rknn实现NPU加速YOLOV5视频推理

        这里给大家强调一下,我使用的是RKNN的python版本来实现NPU加速的,这里我们需要到Github上下载RKNN官方教程,下载完成后进入该文件夹,输入指令

cd /examples/onnx/yolov5

        进入文件夹后,创建一个名为demo.py的文件,将以下代码复制即可,我已经实现了实时视频为了保护隐私,这里我依旧采用官方的yolov5s.rknn模型,而没有用我自己的

import osimport urllibimport tracebackimport timeimport datetime as dtimport sysimport numpy as npimport cv2from rknnlite.api import RKNNLiteRKNN_MODEL = 'yolov5s.rknn'DATASET = './dataset.txt'QUANTIZE_ON = TrueOBJ_THRESH = 0.25NMS_THRESH = 0.45IMG_SIZE = 640CLASSES = ("person", "bicycle", "car", "motorbike ", "aeroplane ", "bus ", "train", "truck ", "boat", "traffic light",           "fire hydrant", "stop sign ", "parking meter", "bench", "bird", "cat", "dog ", "horse ", "sheep", "cow", "elephant",           "bear", "zebra ", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite",           "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife ",           "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza ", "donut", "cake", "chair", "sofa",           "pottedplant", "bed", "diningtable", "toilet ", "tvmonitor", "laptop", "mouse", "remote ", "keyboard ", "cell phone", "microwave ",           "oven ", "toaster", "sink", "refrigerator ", "book", "clock", "vase", "scissors ", "teddy bear ", "hair drier", "toothbrush ")def sigmoid(x):    return 1 / (1 + np.exp(-x))def xywh2xyxy(x):    # Convert [x, y, w, h] to [x1, y1, x2, y2]    y = np.copy(x)    y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left x    y[:, 1] = x[:, 1] - x[:, 3] / 2  # top left y    y[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right x    y[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right y    return ydef process(input, mask, anchors):    anchors = [anchors[i] for i in mask]    grid_h, grid_w = map(int, input.shape[0:2])    box_confidence = sigmoid(input[..., 4])    box_confidence = np.expand_dims(box_confidence, axis=-1)    box_class_probs = sigmoid(input[..., 5:])    box_xy = sigmoid(input[..., :2])*2 - 0.5    col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)    row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)    col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)    row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)    grid = np.concatenate((col, row), axis=-1)    box_xy += grid    box_xy *= int(IMG_SIZE/grid_h)    box_wh = pow(sigmoid(input[..., 2:4])*2, 2)    box_wh = box_wh * anchors    box = np.concatenate((box_xy, box_wh), axis=-1)    return box, box_confidence, box_class_probsdef filter_boxes(boxes, box_confidences, box_class_probs):    """Filter boxes with box threshold. It's a bit different with origin yolov5 post process!    # Arguments        boxes: ndarray, boxes of objects.        box_confidences: ndarray, confidences of objects.        box_class_probs: ndarray, class_probs of objects.    # Returns        boxes: ndarray, filtered boxes.        classes: ndarray, classes for boxes.        scores: ndarray, scores for boxes.    """    boxes = boxes.reshape(-1, 4)    box_confidences = box_confidences.reshape(-1)    box_class_probs = box_class_probs.reshape(-1, box_class_probs.shape[-1])    _box_pos = np.where(box_confidences >= OBJ_THRESH)    boxes = boxes[_box_pos]    box_confidences = box_confidences[_box_pos]    box_class_probs = box_class_probs[_box_pos]    class_max_score = np.max(box_class_probs, axis=-1)    classes = np.argmax(box_class_probs, axis=-1)    _class_pos = np.where(class_max_score >= OBJ_THRESH)    boxes = boxes[_class_pos]    classes = classes[_class_pos]    scores = (class_max_score* box_confidences)[_class_pos]    return boxes, classes, scoresdef nms_boxes(boxes, scores):    """Suppress non-maximal boxes.    # Arguments        boxes: ndarray, boxes of objects.        scores: ndarray, scores of objects.    # Returns        keep: ndarray, index of effective boxes.    """    x = boxes[:, 0]    y = boxes[:, 1]    w = boxes[:, 2] - boxes[:, 0]    h = boxes[:, 3] - boxes[:, 1]    areas = w * h    order = scores.argsort()[::-1]    keep = []    while order.size > 0:        i = order[0]        keep.append(i)        xx1 = np.maximum(x[i], x[order[1:]])        yy1 = np.maximum(y[i], y[order[1:]])        xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])        yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])        w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)        h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)        inter = w1 * h1        ovr = inter / (areas[i] + areas[order[1:]] - inter)        inds = np.where(ovr <= NMS_THRESH)[0]        order = order[inds + 1]    keep = np.array(keep)    return keepdef yolov5_post_process(input_data):    masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]    anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],               [59, 119], [116, 90], [156, 198], [373, 326]]    boxes, classes, scores = [], [], []    for input, mask in zip(input_data, masks):        b, c, s = process(input, mask, anchors)        b, c, s = filter_boxes(b, c, s)        boxes.append(b)        classes.append(c)        scores.append(s)    boxes = np.concatenate(boxes)    boxes = xywh2xyxy(boxes)    classes = np.concatenate(classes)    scores = np.concatenate(scores)    nboxes, nclasses, nscores = [], [], []    for c in set(classes):        inds = np.where(classes == c)        b = boxes[inds]        c = classes[inds]        s = scores[inds]        keep = nms_boxes(b, s)        nboxes.append(b[keep])        nclasses.append(c[keep])        nscores.append(s[keep])    if not nclasses and not nscores:        return None, None, None    boxes = np.concatenate(nboxes)    classes = np.concatenate(nclasses)    scores = np.concatenate(nscores)    return boxes, classes, scoresdef draw(image, boxes, scores, classes, fps):    """Draw the boxes on the image.    # Argument:        image: original image.        boxes: ndarray, boxes of objects.        classes: ndarray, classes of objects.        scores: ndarray, scores of objects.        fps: int.        all_classes: all classes name.    """    for box, score, cl in zip(boxes, scores, classes):        top, left, right, bottom = box        print('class: {}, score: {}'.format(CLASSES[cl], score))        print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))        top = int(top)        left = int(left)        right = int(right)        bottom = int(bottom)        cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)        cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),                    (top, left - 6),                    cv2.FONT_HERSHEY_SIMPLEX,                    0.6, (0, 0, 255), 2)def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)):    # Resize and pad image while meeting stride-multiple constraints    shape = im.shape[:2]  # current shape [height, width]    if isinstance(new_shape, int):        new_shape = (new_shape, new_shape)    # Scale ratio (new / old)    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])    # Compute padding    ratio = r, r  # width, height ratios    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding    dw /= 2  # divide padding into 2 sides    dh /= 2    if shape[::-1] != new_unpad:  # resize        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border    return im, ratio, (dw, dh)# ==================================# 如下为改动部分,主要就是去掉了官方 demo 中的模型转换代码,直接加载 rknn 模型,并将 RKNN 类换成了 rknn_toolkit2_lite 中的 RKNNLite 类# ==================================rknn = RKNNLite()# load RKNN modelprint('--> Load RKNN model')ret = rknn.load_rknn(RKNN_MODEL)# Init runtime environmentprint('--> Init runtime environment')# use NPU core 0 1 2ret = rknn.init_runtime(core_mask=RKNNLite.NPU_CORE_0_1_2)if ret != 0:    print('Init runtime environment failed!')    exit(ret)print('done')# Create a VideoCapture object and read from input file# If the input is the camera, pass 0 instead of the video file namecap = cv2.VideoCapture(0) # Check if camera opened successfullyif (cap.isOpened()== False):   print("Error opening video stream or file") # Read until video is completedwhile(cap.isOpened()):    start = dt.datetime.utcnow()    # Capture frame-by-frame    ret, img = cap.read()    if not ret:        break        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)    img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))    # Inference    print('--> Running model')    outputs = rknn.inference(inputs=[img])    print('done')    # post process    input0_data = outputs[0]    input1_data = outputs[1]    input2_data = outputs[2]    input0_data = input0_data.reshape([3, -1]+list(input0_data.shape[-2:]))    input1_data = input1_data.reshape([3, -1]+list(input1_data.shape[-2:]))    input2_data = input2_data.reshape([3, -1]+list(input2_data.shape[-2:]))    input_data = list()    input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))    input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))    input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))    boxes, classes, scores = yolov5_post_process(input_data)    duration = dt.datetime.utcnow() - start    fps = round(10000000 / duration.microseconds)    # draw process result and fps    img_1 = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)    cv2.putText(img_1, f'fps: {fps}',            (20, 20),            cv2.FONT_HERSHEY_SIMPLEX,            0.6, (0, 125, 125), 2)    if boxes is not None:        draw(img_1, boxes, scores, classes, fps)    # show output    cv2.imshow("post process result", img_1)    # Press Q on keyboard to  exit    if cv2.waitKey(25) & 0xFF == ord('q'):        break # When everything done, release the video capture objectcap.release() # Closes all the framescv2.destroyAllWindows()

        这里我开启了CPU定频,可是并没有提高多少NPU的使用率,干脆我也不再把代码放上来了,等到以后有时间我再研究一下。

        之后在终端中,运行命令

python demo.py

        效果我放到了B站,感兴趣的小伙伴可以点进去看一下B站视频

来源地址:https://blog.csdn.net/weixin_51651698/article/details/129343955

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

香橙派5使用NPU加速yolov5的实时视频推理(二)

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录