神器,轻松可视化 Python 程序调用流程
我们先来看下效果图:
怎么样,很是惊艳吧~
下面我们就来一起完成这个可视化过程。
1. 安装 graphviz 工具
生成图片的过程,是依赖工具 graphviz 的,我们先进行下载安装。
下载地址
- http://www.graphviz.org/download/
2. 实战
接下来我们还需要安装两个 Python 依赖库。
pip install pycallgraph
下面我们先写一个基础的代码;
from pycallgraph import PyCallGraph
from pycallgraph.output import GraphvizOutput
class Banana:
def eat(self):
pass
class Person:
def __init__(self):
self.no_bananas()
def no_bananas(self):
self.bananas = []
def add_banana(self, banana):
self.bananas.append(banana)
def eat_bananas(self):
[banana.eat() for banana in self.bananas]
self.no_bananas()
def main():
graphviz = GraphvizOutput()
graphviz.output_file = 'basic.png'
with PyCallGraph(output=graphviz):
person = Person()
for a in range(10):
person.add_banana(Banana())
person.eat_bananas()
if __name__ == '__main__':
main()
代码比较简单,定义了两个简单类,主要 pycallgraph 的核心代码在 main 函数中,在 with 代码块下,把我们定义的代码执行一遍即可
运行上面的代码,会在当前目录下生成 basic.png 图片文件
从生成的图片可以非常清晰的看出整个代码的运行过程,从 main 代码块到各个类的初始化,可以说一目了然。
我们再来一个复杂一点的例子:
import re
from pycallgraph import PyCallGraph
from pycallgraph import Config
from pycallgraph.output import GraphvizOutput
def main():
graphviz = GraphvizOutput()
graphviz.output_file = 'regexp.png'
config = Config(include_stdlib=True)
with PyCallGraph(output=graphviz, config=config):
reo = compile()
match(reo)
def compile():
return re.compile('^[abetors]*$')
def match(reo):
[reo.match(a) for a in words()]
def words():
return [
'abbreviation',
'abbreviations',
'abettor',
'abettors',
'abilities',
'ability',
'abrasion',
'abrasions',
'abrasive',
'abrasives',
]
if __name__ == '__main__':
main()
代码同样不负责,不过在编译器内部是调用了 re 正则的,我们来看看最终生成的图片:
可以看到整个代码过程复杂了很多,因为内部调用了很多正则内部函数等,但是整体还是非常清晰的
可以说这个神级第三方库,绝对是众多 Python 爱好者,尤其是刚刚入门 Python 领域的朋友的福音,当我们遇到某些不熟悉的较为复杂的代码块时,不妨使用该库来尝试一下可视化,看看能不能从中爆发灵感呢~
以上就是神器,轻松可视化 Python 程序调用流程的详细内容,更多请关注编程网其它相关文章!
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341