我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python学习之.iloc与.loc的区别、联系和用法

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python学习之.iloc与.loc的区别、联系和用法

最近接触到数据科学,需要对一些数据表进行分析,观察到代码中一会出现loc一会又出现iloc,下面对两者的用法给出我的一些理解。

1.联系

(1)操作对象相同:loc和iloc都是对DataFrame类型进行操作;

(2)完成目的相同:二者都是用于选取DataFrame中对应行或列中的元素。

2.区别

loc和iloc索引的行列标签类型不同。

iloc使用顺序数字来索引数据,而不能使用字符型的标签来索引数据;注意:这里的顺序数字是指从0开始计数!

loc使用实际设置的索引来索引数据。但行列名为数字时,loc也可以索引数字,但这里的数字不一定从0开始编号,是对应具体行列名的数字!

3.用法

下面用代码来讲解两者的用法。

3.1行列全为从0开始顺序编号

import pandas as pd
import numpy as np
 
a = np.arange(12).reshape(3,4)
#将a转化为DataFrame类型
df = pd.DataFrame(a)
#展示df
df

由于未给df的行列命名,默认从0开始编号,所以这个时候使用loc和iloc结果是一样的。

索引为一个数,默认输出行
print(df.loc[0])#输出第0行元素
print(df.iloc[0])#输出第0行元素

 两者输出结果都为:

0    0
1    1
2    2
3    3
Name: 0, dtype: int32

输出结果为df第0行元素,结果中第一列表示列名,第二列表示具体的值。如果只需要输出某一列,输入df.loc[:,0]表示输出第0列。

如果需要输出第0到2列的数据。

#方式1
df.loc[:,0:2]#可把loc理解为遍历字符串类型,0:2则表示标签为0,1,2三列
#方式2
df.iloc[:,0:3]#iloc遍历的数数字,python中0:3对应0,1,和2

输出结果均为:

3.2有一行或列不是从0顺序编号

#把行标签换成其他数字编号
df.index=[2,5,7]
df.loc[2]

此时df变为:

 输出结果为:

0    0
1    1
2    2
3    3
Name: 2, dtype: int32

输出结果对应的是列标签为“2”所在的行。

我们继续用df.iloc[2]输出结果:

0     8
1     9
2    10
3    11
Name: 7, dtype: int32

可见输出的是第2行的数据。

在这里我们能大概对loc和iloc的用法有了一定的了解。

3.3行或者列为非数字标签

#把行标签转化为非数字类型
df.index=['a','b','c']
#输出第a、b行,第0到2列的数据
#方式1
df.loc[['a','b'],0:2]#可把loc理解为遍历字符串类型,0:2则表示标签为0,1,2三列
#方式2
df.iloc[0:2,0:3]#iloc遍历的是数字,0:2表示的是0和1,0:3表示0,1,2。

两者输出结果均为:

3.4 其他用法

一般情况下,表的行为从0编号的数字类型,列为具体的字符串类型。行的数字容易确定,列的列名容易确定。

#将行换成0 1 2编号
df.index=[0,1,2]
#列标签换成A B C D
df.columns=['A','B','C','D']
df.iloc[1]['A']#实现输出第1行第A列的数据

输出结果为4。

如果要输出第1行,第AB列,使用df.iloc[1][['A','B']],这里一定要注意'A','B'是作为一个列表输入的,右侧一共有两个中括号。

输出结果:

A    4
B    5
Name: 1, dtype: int32

df.iloc[1][['A','B']]等价于df.iloc[1,0:2],但是很多情况下我们不知道具体列名对应的数字,所以采用第一种方法可以提高编程效率。

总结

到此这篇关于Python学习之.iloc与.loc的区别、联系和用法的文章就介绍到这了,更多相关Python .iloc与.loc用法内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python学习之.iloc与.loc的区别、联系和用法

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python中.iloc与.loc的区别、联系和用法是什么

本文小编为大家详细介绍“Python中.iloc与.loc的区别、联系和用法是什么”,内容详细,步骤清晰,细节处理妥当,希望这篇“Python中.iloc与.loc的区别、联系和用法是什么”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入
2023-06-30

机器学习、深度学习和神经网络之间的区别和联系

机器学习、深度学习和神经网络是人工智能领域相互关联的技术。机器学习赋予计算机从数据中学习的能力,深度学习则使用神经网络提取更高级别的特征,神经网络受人脑运作启发,处理输入数据并输出预测。这些技术之间的区别在于复杂性、层数和数据需求。联系在于机器学习是深度学习的基础,神经网络是深度学习架构的基石,三者共同用于从数据中提取知识并做出预测,广泛应用于图像识别、自然语言处理等领域。
机器学习、深度学习和神经网络之间的区别和联系
2024-04-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录