我的编程空间,编程开发者的网络收藏夹
学习永远不晚

pytorch 预训练模型读取修改相关参数的填坑问题

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

pytorch 预训练模型读取修改相关参数的填坑问题

pytorch 预训练模型读取修改相关参数的填坑

修改部分层,仍然调用之前的模型参数。


resnet = resnet50(pretrained=False)
resnet.load_state_dict(torch.load(args.predir))
 
res_conv31 = Bottleneck_dilated(1024, 256,dilated_rate = 2)
print("---------------------",res_conv31)
print("---------------------",resnet.layer3[1])
 
res_conv31.load_state_dict(resnet.layer3[1].state_dict())

网络预训练模型与之前的模型对应不上,名称差个前缀


model_dict = model.state_dict()
# print(model_dict)
pretrained_dict = torch.load("/yzc/reid_testpcb/se_resnet50-ce0d4300.pth")
keys = []
for k, v in pretrained_dict.items():
       keys.append(k)
i = 0
for k, v in model_dict.items():
    if v.size() == pretrained_dict[keys[i]].size():
         model_dict[k] = pretrained_dict[keys[i]]
         #print(model_dict[k])
         i = i + 1
model.load_state_dict(model_dict)

最后是修改参数名拿来用的,


from collections import OrderedDict
pretrained_dict = torch.load('premodel')
 
new_state_dict = OrderedDict()
 
# for k, v in mgn_state_dict.items():
#     name = k[7:]  # remove `module.`
#     new_state_dict[name] = v
# self.model = self.model.load_state_dict(new_state_dict)
 
for k, v in pretrained_dict.items():
    name = "model.module."+k   # remove `module.`
    # print(name)
    new_state_dict[name] = v
self.model.load_state_dict(new_state_dict)

pytorch:加载预训练模型中的部分参数,并固定该部分参数(真实有效)

大家在学习pytorch时,可能想利用pytorch进行fine-tune,但是又烦恼于参数的加载问题。下面我将讲诉我的使用心得。

Step1: 加载预训练模型,并去除需要再次训练的层


#注意:需要重新训练的层的名字要和之前的不同。
model=resnet()#自己构建的模型,以resnet为例
model_dict = model.state_dict()
pretrained_dict = torch.load('xxx.pkl')
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)

Step2:固定部分参数


#k是可训练参数的名字,v是包含可训练参数的一个实体
#可以先print(k),找到自己想进行调整的层,并将该层的名字加入到if语句中:
for k,v in model.named_parameters():
    if k!='xxx.weight' and k!='xxx.bias' :
        v.requires_grad=False#固定参数

Step3:训练部分参数


#将要训练的参数放入优化器
optimizer2=torch.optim.Adam(params=[model.xxx.weight,model.xxx.bias],lr=learning_rate,betas=(0.9,0.999),weight_decay=1e-5)

Step4:检查部分参数是否固定

debug之后,程序正常运行,最好检查一下网络的参数是否真的被固定了,如何没固定,网络的状态接近于重新训练,可能会导致网络性能不稳定,也没办法得到想要得到的性能提升。


for k,v in model.named_parameters():
   if k!='xxx.weight' and k!='xxx.bias' :
   print(v.requires_grad)#理想状态下,所有值都是False

需要注意的是,操作失误最大的影响是,loss函数几乎不会发生变化,一直处于最开始的状态,这很可能是因为所有参数都被固定了。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

pytorch 预训练模型读取修改相关参数的填坑问题

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录