我的编程空间,编程开发者的网络收藏夹
学习永远不晚

扣丁学堂Python培训详解Pytho

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

扣丁学堂Python培训详解Pytho

Python生成器与迭代器对于喜欢Python开发的小伙伴们来说应该是不陌生的,不了解的小伙伴也没有关系,本篇文章扣丁学堂Python培训小编就给小伙伴们详解一下Python生成器与迭代器,感兴趣的小伙伴就随小编来了解一下吧。

列表生成式:

例一:

a = [i+1 for i in range(10)]

print(a)

输出:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

例二:

L = [1, 2, 3, 4, 5]

print([i*i for i in L if i>3])

输出:

[16, 25]

例三:

L = [1, 2, 3, 4, 5]

I = [6, 7, 8, 9, 10]

print([i*a for i in L for a in I if i > 2 if a < 8])

输出:

[18, 21, 24, 28, 30, 35]

生成器:

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

示例:

L = [1, 2, 3, 4, 5]

I = [6, 7, 8, 9, 10]

g = (i*a for i in L for a in I )

print(g)

输出:

<generator object <genexpr> at 0x00000276586C1F48>

创建L和g的区别仅在于最外层的[]和(),L是一个list,而g是一个generator。

我们可以直接打印出list的每一个元素,可以通过generator的next()方法

next(g)

例一:

L = [1, 2, 3, 4, 5]

I = [6, 7, 8, 9, 10]

g = (i*a for i in L for a in I )

print(next(g))

print(next(g))

print(next(g))

输出:

6

7

8

例二:

L = [1, 2, 3, 4, 5]

I = [6, 7, 8, 9, 10]

g = (i*a for i in L for a in I if i > 2 if a < 8)

print(next(g))

print(next(g))

print(next(g))

输出:

18

21

24

因为generator保存的是算法,每次调用next(g)就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。正确的方法是使用for循环,因为generator也是可迭代对象:

例三:

g = (i*i for i in range(0, 5))

for i in g:

print(i)

当我们创建了一个generator后,基本上永远不会调用next()方法,而是通过for循环来迭代它。

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

def fib(max):

n, a, b = 0, 0, 1

while n < max:

print b

a, b = b, a + b

n = n + 1

上面的函数可以输出斐波那契数列的前N个数:

fib(6)

1

1

2

3

5

8

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

def fib(max):

n,a,b = 0,0,1

while n < max:

#print(b)

yield b

a,b = b,a+b

n += 1

return 'done'

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

def fib(max):

n, a, b = 0, 0, 1

while n < max:

yield b

a, b = b, a + b

n = n + 1

return 'done'

print(fib(5))

输出:

<generator object fib at 0x0000023DC66C1F48>

调用方法: ##但是用for循环调用generator时,\

发现拿不到generator的return语句\

的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:

for i in fib(5):

print(i)

输出:

1

1

2

3

5

或者:

date = fib(5)

print(date.__next__())

print(date.__next__())

print(date.__next__())

print('test')

print(date.__next__())

print(date.__next__())

输出:

1

1

2

test

3

5

send方法有一个参数,该参数指定的是上一次被挂起的yield语句的返回值

还可通过yield实现在单线程的情况下实现并发运算的效果

author = 'Alex Li'

import time

def consumer(name):

print("%s 准备吃包子啦!" %name)

while True:

baozi = yield

print("包子[%s]来了,被[%s]吃了!" %(baozi,name))

def producer(name):

c = consumer('A')

c2 = consumer('B')

c.__next__()

c2.__next__()

print("老子开始准备做包子啦!")

for i in range(10):

time.sleep(1)

print("做了2个包子!")

c.send(i)

c2.send(i)

producer("alex")

通过生成器实现协程并行运算

迭代器:

可以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如list、tuple、dict、set、str等;

一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable。

可以使用isinstance()判断一个对象是否是Iterable对象:

from collections import Iterable

isinstance([], Iterable)

True

isinstance({}, Iterable)

True

isinstance('abc', Iterable)

True

isinstance((x for x in range(10)), Iterable)

True

isinstance(100, Iterable)

False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

*可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。

可以使用isinstance()判断一个对象是否是Iterator对象:

from collections import Iterator

isinstance((x for x in range(10)), Iterator)

True

isinstance([], Iterator)

False

isinstance({}, Iterator)

False

isinstance('abc', Iterator)

False

生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。

把list、dict、str等Iterable变成Iterator可以使用iter()函数:

isinstance(iter([]), Iterator)

True

isinstance(iter('abc'), Iterator)

True

为什么list、dict、str等数据类型不是Iterator?

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

小结:

凡是可作用于for循环的对象都是Iterable类型;

凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python3的for循环本质上就是通过不断调用next()函数实现的,例如:

for x in [1, 2, 3, 4, 5]:

pass

实际上完全等价于:

it = iter([1, 2, 3, 4, 5])

while True:

try:

x = next(it)

except StopIteration:

break

最后想要了解更多关于Python和人工智能方面内容的小伙伴,请关注扣丁学堂Python培训官网、微信等平台,扣丁学堂IT职业在线学习教育平台为您提供权威的Python开发环境搭建视频,Python培训后的前景无限,行业薪资和未来的发展会越来越好的,扣丁学堂老师精心推出的Python视频教程定能让你快速掌握Python从入门到精通开发实战技能。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

扣丁学堂Python培训详解Pytho

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

扣丁学堂Python培训详解Pytho

Python生成器与迭代器对于喜欢Python开发的小伙伴们来说应该是不陌生的,不了解的小伙伴也没有关系,本篇文章扣丁学堂Python培训小编就给小伙伴们详解一下Python生成器与迭代器,感兴趣的小伙伴就随小编来了解一下吧。列表生成式:例
2023-01-31

扣丁学堂Python培训简述Pytho

本篇文章扣丁学堂Python培训小编给读者们分享一下Python线程池模块ThreadPoolExecutor用法,文中结合实例形式分析了Python线程池模块ThreadPoolExecutor的导入与基本使用方法,对此感兴趣的小伙伴就随
2023-01-31

扣丁学堂Python培训之Python

今天千锋扣丁学堂Python培训老师给大家分享一篇关于python3字符串操作总结的详细介绍,中通过示例代码介绍的非常详细,下面我们一起来看一下吧。字符串截取s = 'hello's[0:3]'he's[:] #截取全部字符'hello'消
2023-01-31

扣丁学堂Python培训详解如何在Ap

对Python开发技术感兴趣的小伙伴是否知道如何在Apache中运行Python WSGI应用呢?不知道的小伙伴也没有关系,本篇文章扣丁学堂Python培训小编就给读者们分享一下如何在Apache中运行Python WSGI应用,对此感兴趣
2023-01-31

千锋扣丁学堂Python培训之详解实现

今天千锋扣丁学堂Python培训老师给大家分享一篇关于Python两台电脑实现TCP通信的方法示例,文中通过示例代码介绍的非常详细,首先比如为了实现Nao机器人与电脑端的TCP通信,于是研究了一下Python实现TCP通信,在网上也看到了很
2023-01-31

扣丁学堂Python培训之基于itch

今天扣丁学堂Python培训老师给大家分享一个基于itchat模块实现微信防撤回的案例,比如有时候,女神发来一条消息,说约你看电影,她考虑了一下,又撤回了,不约你了…而你又想知道她究竟发了什么,该怎么办?微信防撤回了解一下。环境要求Pyth
2023-01-31

千锋扣丁学堂Python培训之Web版

今天千锋扣丁学堂Python培训老师给大家分一篇关于PythonWeb版语音合成实例详解,首先语音合成技术能将用户输入的文字,转换成流畅自然的语音输出,并且可以支持语速、音调、音量设置,打破传统文字式人机交互的方式,让人机沟通更自然,下面我
2023-01-31

千锋扣丁学堂Python培训之代理IP

今天千锋扣丁学堂Python培训老师给大家分享一篇Python代理IP爬虫新手使用的详细介绍,首先Python爬虫要经历爬虫、爬虫被限制、爬虫反限制的过程。当然后续还要网页爬虫限制优化,爬虫再反限制的一系列道高一尺魔高一丈的过程。爬虫的初级
2023-01-31

扣丁学堂Python培训简述如何用Py

本篇文章扣丁学堂Python培训小编给大家介绍一下如何用Python实现播放音频和录音功能,文中通过示例代码介绍的非常详细,对大家学习或者使用Python具有一定的参考学习价值,感兴趣的小伙伴就随小编一起来了解一下吧。三种播放音频的方式使用
2023-01-31

千锋扣丁学堂Python培训之操作Ex

今天千锋扣丁学堂Python培训老师给大家分享一篇关于Python3操作Excel文件(读写)的简单实例详解,首先来安装版本安装的版本为0.9.3,但是官网的介绍还是关于Version0.7.3版本的,无妨,不影响理解。安装读Excel文件
2023-01-31

千锋扣丁学堂Python培训之黑客们会

今天千锋扣丁学堂Python培训老师给大家分享一篇关于黑客们会用到哪些关于Python技术的详细介绍,首先Python已经成为漏洞开发领域的行业标准,读者会发现大多数概念验证工具都是用Python语言编写的(除了用Ruby写的安全漏洞检测工
2023-01-31

千锋扣丁学堂Python培训之十个安全

今天千锋扣丁学堂Python培训老师给大家分享一篇关于初学者学习Python中的10个安全漏洞以及如何修复漏洞的方法。比如在写代码的过程中,我们的总会遇见各式各样的大坑小坑。Python也不例外,在使用模块或框架时,也存在着许多糟糕的实例。
2023-01-31

千锋扣丁学堂Python培训之开发一个

今天千锋扣丁学堂Python培训老师给大家分享一篇关于如何利用Python开发一个简单的猜数字游戏的详细介绍,文中通过示例代码介绍的非常详细下面我们一起来看一下吧。游戏规则玩家将猜测一个数字。如果猜测是正确的,玩家赢。如果不正确,程序会提示
2023-01-31

扣丁学堂区块链培训简述用Django实

对数字货币的崛起感到新奇的我们,一定想知道其背后的技术——区块链是怎样实现的。本篇文章扣丁学堂区块链培训小编给读者们分享一下用Django实现一个可运行的区块链应用,感兴趣的小伙伴就随小编来了解一下吧。准备工作本文要求读者对Python有基
2023-01-31

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录