我的编程空间,编程开发者的网络收藏夹
学习永远不晚

MySQL——索引详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

MySQL——索引详解

目录

一、为什么要有索引?

二、什么是索引?

三、索引的原理

四、MySQL的存储引擎

、索引的数据结构

、聚簇和非聚簇索引

七、索引的设计原则


一、为什么要有索引?

一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语句的优化显然是重中之重。说起加速查询,就不得不提到索引了。

二、什么是索引?

索引在MySQL中也叫是一种“键”,是存储引擎用于快速找到记录的一种数据结构。索引对于良好的性能 非常关键,尤其是当表中的数据量越来越大时,索引对于性能的影响愈发重要。 索引优化应该是对查询性能优化最有效的手段了。索引能够轻易将查询性能提高好几个数量级。 索引相当于字典的音序表,如果要查某个字,如果不使用音序表,则需要从几百页中逐页去查。

三、索引的原理

索引的目的在于提高查询效率,与我们查阅图书所用的目录是一个道理:先定位到章,然后定位到该章下的一个小节,然后找到页数。相似的例子还有:查字典,查火车车次,飞机航班等

本质都是:通过不断地缩小想要获取数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是说,有了这种索引机制,我们可以总是用同一种查找方式来锁定数据。

数据库也是一样,但显然要复杂的多,因为不仅面临着等值查询,还有范围查询(>、<、between、in)、模糊查询(like)、并集查询(or)等等。数据库应该选择怎么样的方式来应对所有的问题呢?我们回想字典的例子,能不能把数据分成段,然后分段查询呢?最简单的如果1000条数据,1到100分成第一段,101到200分成第二段,201到300分成第三段…这样查第250条数据,只要找第三段就可以了,一下子去除了90%的无效数据。但如果是1千万的记录呢,分成几段比较好?按照搜索树的模型,其平均复杂度是lgN,具有不错的查询性能。但这里我们忽略了一个关键的问题,复杂度模型是基于每次相同的操作成本来考虑的。而数据库实现比较复杂,一方面数据是保存在磁盘上的,另外一方面为了提高性能,每次又可以把部分数据读入内存来计算,因为我们知道访问磁盘的成本大概是访问内存的十万倍左右,所以简单的搜索树难以满足复杂的应用场景。

四、MySQL的存储引擎

#查询索引show engines;

各存储引擎的特性如下表所示:


其中最常见的两种存储引擎是MyISAM和InnoDB

特点InnoDBMyIsamMemoryArchiveBDB
存储限制64TB没有没有没有
事务安全支持支持
锁机制行锁表锁表锁行锁页锁
B树索引支持支持支持支持
哈希索引支持支持
全文索引支持
集群索引支持
数据缓存支持支持
索引缓存支持支持支持
数据可压缩支持支持
空间使用N/A非常低
内存使用中等
批量插入的速度非常高
支持外键支持


五、索引的数据结构

MySQL主要用到两种结构:B+ Tree索引和Hash索引:InnoDB存储引擎默认是B+Tree索引,Memory 存储引擎默认Hash索引。

MySQL中,只有Memory(Memory表只存在内存中,断电会消失,适用于临时表)存储引擎显示支持Hash索引,是Memory表的默认索引类型,Memory表也可以使用B+Tree索引。Hash索引把数据以hash形式组织起来,因此当查找某一条记录的时候,速度非常快。但是因为hash结构,每个键只对应一个值,而且是散列的方式分布。所以它并不支持范围查找和排序等功能。B+Tree是mysql使用最频繁的一个索引数据结构,是InnoDB和MyIsam存储引擎模式的索引类型。相对Hash索引,B+Tree在查找单条记录的速度比不上Hash索引,但是因为更适合排序等操作,所以它更受欢迎。毕竟不可能只对数据库进行单条记录的操作。

B+树是一个平衡的多叉树,从根节点到每个叶子节点的高度差值不超过1,而且同层级的二节点间有指针相关连接,在B+树上的常规检索,从根节点到叶子节点的搜索效率基本相当,不会出现大幅波动,而且基于索引的顺序扫描时,也可以利用双向指针快速左右移动,效率非常高。因此B+树索引被广泛应用于数据库、文件系统等场景。
哈希索引就是采用一定的哈希算法,把键值换算成新的哈希值,检索时不需要类似B+树那样从根节点到叶子节点逐级查找,只需一次哈希算法即可立刻定位到相应的位置,速度非常快。

两种索引的对比如下:

如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值,前提是键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,知道找到对应的数据。

如果是范围查询检索,这时候哈徐索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;哈希索引也没办法利用索引完成排序,以及like这样的部分模糊查询;哈希索引也不支持多列联合索引的最左匹配规则。

B+树索引的关键字检索效率比较平均,不像B树那样波动大,在有大量重复键值情况下,哈希索引的效率也是极低的,因此存在哈希碰撞问题。

对比小结:

  • hash类型的索引:查询单条快,范围查询慢
  • btree类型的索引:b+树,层数越多,数据量指数级增长(InnoDB默认支持)

六、聚簇和非聚簇索引

mysql的索引类型跟存储引擎是相关的,InnoDB存储引擎数据文件跟索引文件全部放在ibd文件中,而MyIsam的数据文件放在myd文件中,索引放在myi文件中,其实区分聚簇索引和非聚簇索引非常简单,只要判断数据跟索引是否存储在一起就可以了。

InnoDB存储引擎在进行数据插入的时候,数据必须要跟索引放在一起,如果有主键就使用主键,没有主键就使用唯一键,没有唯一键就使用6字节的rowid,因此跟数据绑定在一起的就是聚簇索引,而为了避免数据冗余存储,其他的索引的叶子节点中存储的都是聚簇索引的key值,因此InnoDB中既有聚簇索引也有非聚簇索引,而MyIsam中只有非聚簇索引。

七、索引的设计原则

在进行索引设计的时候,应该保证索引字段占用的空间越小越好,这只是一个大的方向,还有一些细节点需要注意下:

  1. 适合索引的列是出现在where字句中的列,或者连接子句中指定的列
  2. 基数较小的表,索引效果差,没必要创建索引
  3. 在选择索引列的时候,越短越好,可以指定某些列的一部分,没必要用全部字段的值
  4. 不要给表中的每一个字段都创建索引,并不是索引越多越好
  5. 定义有外键的数据列一定要创建索引
  6. 更新频繁的字段不要有索引
  7. 创建索引的列不要过多,可以创建组合索引,但是组合索引的列的个数不建议太多
  8. 大文本、大对象不要创建索引

来源地址:https://blog.csdn.net/DreamEhome/article/details/128836827

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

MySQL——索引详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

【MySQL】MySQL索引详解

Mysql索引 0.写在前面1.为什么要使用索引2.常见的索引模型3.索引维护4.回表?举例子。 0.写在前面 文章中包含了: 1.什么是索引 2.索引的数据结构,以及各自的使用场景 3.为什么要设置主键自增? 4.基于主键
2023-08-16

MySQL索引原理详解

目录索引是什么索引数据结构树形索引树的动画为什么不是简单的二叉树?为什么不是红黑树?为什么最终选择B+树 而不是B树水平方向可以存放更多的索引key数据量估算叶子节点包含所有的索引字段叶子节点直接包含双向指针,范围查找效率高Hash 索引更
2022-08-19

详解MySQL 聚簇索引与非聚簇索引

1、聚集索引 表数据按照索引的顺序来存储的,也就是说索引项的顺序与表中记录的物理顺序一致。对于聚集索引,叶子结点即存储了真实的数据行,不再有另外单独的数据页。 在一张表上最多只能创建一个聚集索引,因为真实数据的物理顺序只能有一种。 从物理文
2022-05-14

MySQL索引优化Explain详解

在日常工作中,我们会有时会开慢查询去记录一些执行时间比较久的SQL语句,找出这些SQL语句并不意味着完事了,些时我们常常用到explain这个命令来查看一个这些SQL语句的执行计划,查看该SQL语句有没有使用上了索引,有没有做全表扫描,这都
2022-05-12

编程热搜

目录