我的编程空间,编程开发者的网络收藏夹
学习永远不晚

时间序列特征提取的Python和Pandas代码示例

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

时间序列特征提取的Python和Pandas代码示例

使用Pandas和Python从时间序列数据中提取有意义的特征,包括移动平均,自相关和傅里叶变换。

前言

时间序列分析是理解和预测各个行业(如金融、经济、医疗保健等)趋势的强大工具。特征提取是这一过程中的关键步骤,它涉及将原始数据转换为有意义的特征,可用于训练模型进行预测和分析。在本文中,我们将探索使用Python和Pandas的时间序列特征提取技术。

在深入研究特征提取之前,让我们简要回顾一下时间序列数据。时间序列数据是按时间顺序索引的数据点序列。时间序列数据的例子包括股票价格、温度测量和交通数据。时间序列数据可以是单变量,也可以是多变量。单变量时间序列数据只有一个变量,而多变量时间序列数据有多个变量。

图片

有各种各样的特征提取技术可以用于时间序列分析。在本文中,我们将介绍以下技术:

  • Resampling
  • Moving Average
  • Exponential Smoothing
  • Autocorrelation
  • Fourier Transform

1、Resampling

Resampling 重采样主要是改变时间序列数据的频率。这对于平滑噪声或将数据采样到较低的频率很有用。Pandas提供了resample()方法对时间序列数据进行重新采样。resample()方法可用于对数据进行上采样或下采样。下面是一个如何将时间序列降采样到每日频率的示例:

import pandas as pd
 
 # create a time series with minute frequency
 ts = pd.Series([1, 2, 3, 4, 5], index=pd.date_range('2022-01-01', periods=5, freq='T'))
 
 # downsample to daily frequency
 daily_ts = ts.resample('D').sum()
 
 print(daily_ts)

在上面的例子中,我们创建了一个以分钟为频率的时间序列,然后使用resample()方法将其采样到每天的频率。

图片

2、Moving Average

Moving Average 移动平均是一种通过在滚动窗口上求平均值来平滑时间序列数据的技术。可以帮助去除噪声并得到数据的趋势。Pandas提供了rolling()方法来计算时间序列的平均值。下面是一个如何计算时间序列的平均值的例子:

import pandas as pd
 
 # create a time series
 ts = pd.Series([1, 2, 3, 4, 5])
 
 # calculate the rolling mean with a window size of 3
 rolling_mean = ts.rolling(window=3).mean()
 
 print(rolling_mean)

我们创建了一个时间序列,然后使用rolling()方法计算窗口大小为3的移动平均值。

图片

可以看到前两个值因为没有到达移动平均的最小数量3,所以会产生NAN,如果需要的话可以再使用fillna方法进行填充。

3、Exponential Smoothing

Exponential Smoothing 指数平滑是一种通过赋予最近值更多权重来平滑时间序列数据的技术。它可以帮助去除噪声获得数据的趋势。Pandas提供了计算指数移动平均的ewm()方法。

import pandas as pd
 ts = pd.Series([1, 2, 3, 4, 5])
 ts.ewm( alpha =0.5).mean()

时间序列特征提取的Python和Pandas代码示例

在上面的例子中,我们创建了一个时间序列,然后使用ewm()方法计算平滑因子为0.5的指数移动平均。

ewm有很多的参数,这里我们介绍几个主要的。

com:根据质心指定衰减

图片

span 根据范围指定衰减

图片

halflife 根据半衰期指定衰减

图片

alpha 指定平滑系数α

图片

以上4个参数都是指定平滑系数α,只是前三个是根据条件计算出来的,最后一个是手动指定,所以至少要有一个,例如上面的例子我们就直接手动设定了0.5

min_periods 窗口中具有值的最小观察数,默认 0。

adjust 是否进行误差修正 默认True。

adjust =Ture时公式如下:

图片

adjust =False

图片

4、Autocorrelation

Autocorrelation 自相关是一种用于测量时间序列与其滞后版本之间相关性的技术。可以识别数据中重复的模式。Pandas提供了autocorr()方法来计算自相关性。

import pandas as pd
 
 # create a time series
 ts = pd.Series([1, 2, 3, 4, 5])
 
 # calculate the autocorrelation with a lag of 1
 autocorr = ts.autocorr(lag=1)
 
 print(autocorr)

图片

5、Fourier Transform

Fourier Transform 傅里叶变换是一种将时间序列数据从时域变换到频域的技术。可以识别数据中的周期性模式。我们可以使用numpy的fft()方法来计算时间序列的快速傅里叶变换。

import pandas as pd
 import numpy as np
 
 # create a time series
 ts = pd.Series([1, 2, 3, 4, 5])
 
 # calculate the Fourier transform
 fft = pd.Series(np.fft.fft(ts).real)
 
 print(fft)

图片

这里我们只显示了实数的部分。

总结

在本文中,我们介绍了几种使用Python和Pandas的时间序列特征提取技术。这些技术可以帮助将原始时间序列数据转换为可用于分析和预测的有意义的特征,在训练机器学习模型时,这些特征都可以当作额外的数据输入到模型中,可以增加模型的预测能力。


以上就是时间序列特征提取的Python和Pandas代码示例的详细内容,更多请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

时间序列特征提取的Python和Pandas代码示例

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python获取淘宝服务器时间的代码示例

获取淘宝服务器时间的几种方法:使用官方API:直接请求淘宝API获取服务器时间戳。使用第三方库:使用如taobao-sdk等第三方库获取时间。其他方法:使用urllib.request模块或datetime模块获取服务器时间。注意:请定期更新服务器时间,保证准确性。第三方库的使用需谨慎,taobao-sdk不建议用于生产环境。
python获取淘宝服务器时间的代码示例
2024-04-13

python工具模块介绍之time 时间访问和转换的示例代码

这篇文章主要介绍了python工具模块介绍-time 时间访问和转换,本文通过示例代码给大家介绍的非常详细,对大家啊的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
2023-05-17

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录