我的编程空间,编程开发者的网络收藏夹
学习永远不晚

visdom可视化pytorch训练过程

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

visdom可视化pytorch训练过程

  在深度学习模型训练的过程中,常常需要实时监听并可视化一些数据,如损失值loss,正确率acc等。在Tensorflow中,最常使用的工具非Tensorboard莫属;在Pytorch中,也有类似的TensorboardX,但据说其在张量数据加载的效率方面不如visdom。visdom是FaceBook开发的一款可视化工具,其实质是一款在网页端的web服务器,对Pytorch的支持较好。

  visdom的安装比较简单,可以直接使用pip命令。

# visdom 安装指令
pip install visdom

   执行安装命令后,可以执行以下命令启动visdom。

# 启动 visdom web服务器
python -m visdom.server

  若安装成功,则会返回一个网页地址;若报错,则安装失败,可以自行去github上下载源码安装。

 

  将网址复制后在浏览器中打开,就可以看到visdom的主界面。

  这里以监听损失值loss数据,准确率acc数据及可视化图像等方面简要介绍visdom的使用。

3.1 监听单一数据loss

  在模型训练过程中,loss是最常监听的数据,这里就以loss的监听为例,使用visdom可视化loss的变化过程。为了使代码更加简洁,这里以for循环代替模型逐轮训练的过程,loss值则在每个循环内部随机产生。

from visdom import Visdom
import numpy as np
import time

# 将窗口类实例化
viz = Visdom() 

# 创建窗口并初始化
viz.line([0.], [0], win='train_loss', opts=dict(title='train_loss'))

for global_steps in range(10):
    # 随机获取loss值
    loss = 0.2 * np.random.randn() + 1
    # 更新窗口图像
    viz.line([loss], [global_steps], win='train_loss', update='append')
    time.sleep(0.5)

 

3.2 同时监听loss和acc

from visdom import Visdom
import numpy as np
import time

# 将窗口类实例化
viz = Visdom() 

# 创建窗口并初始化
viz.line([[0.,0.]], [0], win='train', opts=dict(title='loss&acc', legend=['loss', 'acc']))
for global_steps in range(10):
    # 随机获取loss和acc
    loss = 0.1 * np.random.randn() + 1
    acc = 0.1 * np.random.randn() + 0.5
    # 更新窗口图像
    viz.line([[loss, acc]], [global_steps], win='train', update='append')
    # 延时0.5s
    time.sleep(0.5)

 

3.3 可视化图像

  在处理图像任务时,还可以用visdom对图像进行可视化。

from visdom import Visdom
import numpy as np
import cv2
import torch

# 使用opencv读取数据
img = cv2.imread('pkq.jpg')
# opencv按照BGR读取,而visdom默认按照RGB显示,因此要进行通道转换
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# visdom类似于pytorch中的卷积模型,接收的数据都要求通道数在前
img = np.transpose(img, (2, 0, 1))
img = torch.from_numpy(img)
# 可视化图像
viz.image(img, win='pkq')

  visdom可以同时在主面板中打开多个窗口,执行上面3个可视化程序后,主面板如下所示:

 

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

visdom可视化pytorch训练过程

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

visdom可视化pytorch训练过程

在深度学习模型训练的过程中,常常需要实时监听并可视化一些数据,如损失值loss,正确率acc等。在Tensorflow中,最常使用的工具非Tensorboard莫属;在Pytorch中,也有类似的TensorboardX,但据说其在张量数据
2023-01-31

PyTorch可视化工具:TensorBoard、Visdom

TensorBoard 一般都是作为 TensorFlow 的可视化工具,与 TensorFlow 深度集成,它能够展现 TensorFlow 的网络计算图,绘制图像生成的定量指标图以及附加数据等。

Pytorch可视化之Visdom怎么用

这篇文章主要为大家展示了“Pytorch可视化之Visdom怎么用”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“Pytorch可视化之Visdom怎么用”这篇文章吧。一、Visdom简介Visd
2023-06-20

PyTorch可视化工具TensorBoard和Visdom怎么用

今天小编给大家分享一下PyTorch可视化工具TensorBoard和Visdom怎么用的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了
2023-06-26

如何使用TensorBoard可视化TensorFlow模型的训练过程

要使用TensorBoard来可视化TensorFlow模型的训练过程,需要按照以下步骤操作:在代码中添加TensorBoard回调函数:在TensorFlow模型的训练过程中,可以通过添加TensorBoard回调函数来收集训练过程中的指
如何使用TensorBoard可视化TensorFlow模型的训练过程
2024-03-01

如何解决Pytorch在测试与训练过程中的验证结果不一致问题

小编给大家分享一下如何解决Pytorch在测试与训练过程中的验证结果不一致问题,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!引言今天在使用Pytorch导入此前保存的模型进行测试,在过程中发现输出的结果与验证结果差距甚大,
2023-06-15

PyCharm MySQL可视化Database配置过程图解

在进行数据库相关的模块学习时,通常有人推荐使用Navicat,确实强大方便,可惜是收费的。这里推荐一个在社区版PyCharm里面直接可视化访问数据库的方法,开源免费。 在社区版的PyCharm中,可以通过下载Database Navigat
2022-05-14

如何简单理解视觉语言模型以及它们的架构、训练过程?

这篇文章介绍了视觉语言模型(VLMs),它们是未来的复合AI系统。文章详细描述了VLMs的基本原理、训练过程以及如何开发一个多模态神经网络,用于图像搜索。

逆天了!用Numpy开发深度学习框架,透视神经网络训练过程

一次模型训练的完整过程大致就串完了,大家可以设置打印语句,或者通过DEBUG的方式跟踪每一行代码的执行过程,这样可以更了解模型的训练过程。

Vue 可视化大屏适配插件之过程篇

一直以来都想自己写一款插件去解决大屏的适配问题,最近终于有时间去完成这件事,特此记录下过程中碰到的问题。

可视化定时任务quartz集成解析全过程

在开发中有很多定时任务都不是写死的而是可以人为配置并且写到数据库中的,下面这篇文章主要给大家介绍了关于可视化定时任务quartz集成解析的相关资料,需要的朋友可以参考下
2022-11-13

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录