我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python使用opencv切割图片白边

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python使用opencv切割图片白边

本文实例为大家分享了python使用opencv切割图片白边的具体代码,可以横切和竖切,供大家参考,具体内容如下

废话不多说直接上码,分享使人进步:


from PIL import Image
from itertools import groupby
import cv2
import datetime
import os
 
# from core.rabbitmq import MessageQueue
 
THRESHOLD_VALUE = 230  # 二值化时的阈值
PRETREATMENT_FILE = 'hq'  # 横切时临时保存的文件夹
W = 540  # 最小宽度
H = 960  # 最小高度
 
 
class Pretreatment(object):
    __doc__ = "图片横向切割"
 
    def __init__(self, path, save_path, min_size=960):
        self.x = 0
        self.y = 0
        self.img_section = []
        self.continuity_position = []
        self.path = path
        self.save_path = save_path
        self.img_obj = None
        self.min_size = min_size
        self.mkdir(self.save_path)
        self.file_name = self.path.split('/')[-1]
 
    def get_continuity_position_new(self):
        img = cv2.imread(self.path)
        gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        ret, thresh1 = cv2.threshold(gray_image, THRESHOLD_VALUE, 255, cv2.THRESH_BINARY)
 
        width = img.shape[1]
        height = img.shape[0]
        self.x = width
        self.y = height
        for i in range(0, height):
            if thresh1[i].sum() != 255 * width:
                self.continuity_position.append(i)
 
    def filter_rule(self):
        if self.y < self.min_size:
            return True
 
    def mkdir(self, path):
        if not os.path.exists(path):
            os.makedirs(path)
 
    def get_section(self):
        # 获取区间
        for k, g in groupby(enumerate(self.continuity_position), lambda x: x[1] - x[0]):
            l1 = [j for i, j in g]  # 连续数字的列表
            if len(l1) > 1:
                self.img_section.append([min(l1), max(l1)])
 
    def split_img(self):
        print(self.img_section)
        for k, s in enumerate(self.img_section):
            if s:
                if not self.img_obj:
                    self.img_obj = Image.open(self.path)
 
                if self.x < W:
                    return
                if s[1] - s[0] < H:
                    return
                cropped = self.img_obj.crop((0, s[0], self.x, s[1]))  # (left, upper, right, lower)
                self.mkdir(os.path.join(self.save_path, PRETREATMENT_FILE))
                cropped.save(os.path.join(self.save_path, PRETREATMENT_FILE, f"hq_{k}_{self.file_name}"))
 
    def remove_raw_data(self):
        os.remove(self.path)
 
    def main(self):
        # v2
        try:
            self.get_continuity_position_new()
            self.filter_rule()
            self.get_section()
            self.split_img()
        except Exception as e:
            print(self.file_name)
            print(e)
        finally:
            if self.img_obj:
                self.img_obj.close()
 
 
class Longitudinal(Pretreatment):
    def get_continuity_position_new(self):
        print(self.path)
        img = cv2.imread(self.path)
        gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        ret, thresh1 = cv2.threshold(gray_image, THRESHOLD_VALUE, 255, cv2.THRESH_BINARY)
 
        width = img.shape[1]
        height = img.shape[0]
        print(width, height)
        self.x = width
        self.y = height
        for i in range(0, width):
            if thresh1[:, i].sum() != 255 * height:
                self.continuity_position.append(i)
 
    def split_img(self):
        print(self.img_section)
        for k, s in enumerate(self.img_section):
            if s:
                if not self.img_obj:
                    self.img_obj = Image.open(self.path)
                if self.y < H:
                    return
                if s[1] - s[0] < W:
                    return
                cropped = self.img_obj.crop((s[0], 0, s[1], self.y))  # (left, upper, right, lower)
                cropped.save(os.path.join(self.save_path, f"{k}_{self.file_name}"))
 
 
def main(path, save_path):
    starttime = datetime.datetime.now()
    a = Pretreatment(path=path, save_path=save_path)
    a.main()
    for root, dirs, files in os.walk(os.path.join(save_path, PRETREATMENT_FILE)):
        for i in files:
            b = Longitudinal(path=os.path.join(save_path, PRETREATMENT_FILE, i), save_path=save_path)
            b.main()
            os.remove(os.path.join(save_path, PRETREATMENT_FILE, i))
    endtime = datetime.datetime.now()
    print(f'耗时:{(endtime - starttime)}')
 
 
if __name__ == '__main__':
    path = '你图片存放的路径'
    save_path = '要保存的路径'
    for _, _, files in os.walk(path):
        for i in files:
            main(path=os.path.join(path, i), save_path=save_path)
    os.rmdir(os.path.join(save_path, PRETREATMENT_FILE))

原始图片:

结果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程网。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python使用opencv切割图片白边

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

如何使用Java实现图片切割功能

这篇文章将为大家详细讲解有关如何使用Java实现图片切割功能,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。具体内容如下工具类package com.xudaolong.Utils;import javax
2023-06-28

怎么使用Python VTK完成图像切割

这篇文章主要介绍“怎么使用Python VTK完成图像切割”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“怎么使用Python VTK完成图像切割”文章能帮助大家解决问题。1、读取二维图片序列完成面绘
2023-06-30

怎么在Python中使用opencv截取图片

这篇文章将为大家详细讲解有关怎么在Python中使用opencv截取图片,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。python的五大特点是什么python的五大特点:1.简单易学,开发程
2023-06-14

怎么使用Python第三方opencv库实现图像分割处理

这篇文章主要介绍了怎么使用Python第三方opencv库实现图像分割处理的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇怎么使用Python第三方opencv库实现图像分割处理文章都会有所收获,下面我们一起来看
2023-07-02

如何使用OpenCV及Python搭建图片缩略图服务器

如何使用OpenCV及Python搭建图片缩略图服务器,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。应用程序进程树, 默认 Poolboy 中初始化10个用于处
2023-06-03

怎么在Python中使用Opencv识别相似的图片

这篇文章给大家介绍怎么在Python中使用Opencv识别相似的图片,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。python主要应用领域有哪些1、云计算,典型应用OpenStack。2、WEB前端开发,众多大型网站均
2023-06-14

Python如何使用OpenCV和K-Means聚类对毕业照进行图像分割

这篇文章给大家分享的是有关Python如何使用OpenCV和K-Means聚类对毕业照进行图像分割的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。我们将看到一种图像分割方法,即K-Means Clustering。
2023-06-15

OpenCV-Python怎么使用分水岭算法实现图像分割与提取功能

小编给大家分享一下OpenCV-Python怎么使用分水岭算法实现图像分割与提取功能,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!随着当今世界的发展,计算机视觉技
2023-06-15

使用python怎么解决OpenCV在读取显示图片闪退的问题

使用python怎么解决OpenCV在读取显示图片闪退的问题?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。waitKey函数:用来等待按键,当用户按下按键后,该
2023-06-06

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录