我的编程空间,编程开发者的网络收藏夹
学习永远不晚

CNN怎么实现数字识别并改变参数

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

CNN怎么实现数字识别并改变参数

这篇文章主要讲解了“CNN怎么实现数字识别并改变参数”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“CNN怎么实现数字识别并改变参数”吧!

  1.网络层级结构概述

  Input layer: 输入数据为原始训练图像

  Conv1:6 个 5 * 5 的卷积核,步长 Stride 为 1

  Pooling1:卷积核 size 为 2 * 2,步长 Stride 为 2

  Conv2:12 个 5 * 5 的卷积核,步长 Stride 为 1

  Pooling2:卷积核 size 为 2 * 2,步长 Stride 为 2

  Output layer:输出为 10 维向量

  2.实验基本流程

  (1)获取训练数据和测试数据

  直接使用keras里面的手写数据集

  from keras.datasets import mnist

  (x_train, y_train), (x_test, y_test) = mnist.load_data()

  (2)定义网络层级结构

  代码:

  def get_model():

  model = Sequential()

  model.add(Conv2D(filters=6, kernel_size=(5, 5),strides=1,activation='relu',input_shape=(28, 28, 1)))

  model.add(MaxPooling2D(pool_size=(2, 2),strides=2))

  model.add(Conv2D(filters=12, kernel_size=(5, 5),strides=1,activation='relu'))

  model.add(MaxPooling2D(pool_size=(2, 2),strides=2))

  model.add(Flatten())

  #model.add(Conv2D(filters=120, kernel_size=(5, 5),activation='relu'))

  model.add(Dense(120, activation='relu'))

  model.add(Dense(84, activation='relu'))

  model.add(Dropout(0.5))

  model.add(Dense(10, activation='softmax'))

  # 编译模型,采用多分类的损失函数,优化器是Adadelta

  model.compile(loss='categorical_crossentropy',

  optimizer='Adadelta',

  metrics=['accuracy'])

  return model

  (3)交叉验证

  直接附上代码

  def k_cross(data,target,bsize,epoch,sp):

  print("------进行交叉验证------")

  ans=0 #交叉验证正确率的和

  kf = KFold(n_splits=sp, shuffle = True)

  for train, test in kf.split(data):

  model.fit(data[train], target[train],

  batch_size=bsize,

  epochs=epoch,

  verbose=0,

  validation_data=(data[test], target[test]))

  score = model.evaluate(data[test], target[test], verbose=0)

  ans+=score[1]

  return ans/sp

  3完整代码

  我这里直接就3折了,太多了运行时间太长。

  最后完整代码:

  # -*- coding: utf-8 -*-

  """

  Created on Tue Dec 10 15:42:27 2019

  @author: pff

  """

  from __future__ import print_function

  import numpy as np

  import keras

  from keras.datasets import mnist

  from keras.models import Sequential

  from keras.layers import Dense, Dropout, Flatten

  from keras.layers import Conv2D, MaxPooling2D

  from sklearn.model_selection import KFold

  import matplotlib.pyplot as plt

  def getdata():

  #提取出训练集和测试集

  (x_train, y_train), (x_test, y_test) = mnist.load_data()

  x_train = x_train.astype('float32')

  x_test = x_test.astype('float32')

  x_train /= 255

  x_test /= 255

  x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)

  x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)

  # 采用one-hot编码

  y_train = keras.utils.to_categorical(y_train, 10)

  y_test = keras.utils.to_categorical(y_test, 10)

  #将测试集和训练集合并,便于后面交叉验证

  data = np.row_stack((x_train,x_test))

  target = np.row_stack((y_train,y_test))

  return data, target

  # 构建模型

  def get_model():

  model = Sequential()郑州做无痛人流手术费用 http://www.zzzykdfk.com/

  model.add(Conv2D(filters=6, kernel_size=(5, 5),strides=1,activation='relu',input_shape=(28, 28, 1)))

  model.add(MaxPooling2D(pool_size=(2, 2),strides=2))

  model.add(Conv2D(filters=12, kernel_size=(5, 5),strides=1,activation='relu'))

  model.add(MaxPooling2D(pool_size=(2, 2),strides=2))

  model.add(Flatten())

  #model.add(Conv2D(filters=120, kernel_size=(5, 5),activation='relu'))

  model.add(Dense(120, activation='relu'))

  model.add(Dense(84, activation='relu'))

  model.add(Dropout(0.5))

  model.add(Dense(10, activation='softmax'))

  # 编译模型,采用多分类的损失函数,用 Adadelta 算法做优化方法

  model.compile(loss='categorical_crossentropy',

  optimizer='Adadelta',

  metrics=['accuracy'])

  return model

  def kcross(data,target,bsize,epoch,sp):

  print("------进行交叉验证------")

  ans=0

  kf = KFold(n_splits=sp, shuffle = True)

  for train, test in kf.split(data):

  #print("第{}次开始".format(i+1))

  model.fit(data[train], target[train],

  batch_size=bsize,

  epochs=epoch,

  verbose=0,

  validation_data=(data[test], target[test]))

  score = model.evaluate(data[test], target[test], verbose=0)

  ans+=score[1]

  return ans/sp

  #画结果图

  def draw(batch_size,y,epoch):

  plt.figure()

  plt.rcParams['font.sans-serif']='SimHei'

  plt.ylabel('正确率')

  plt.xlabel('batch_size')

  plt.title('不同参数下卷积神经网络数字识别图')

  for i in range(len(y)):

  plt.scatter(batch_size, y[i], s=30, c='r', marker='x', linewidths=1)

  plt.plot(batch_size,y[i],label="epoch:"+str(epoch[i]))

  plt.legend()

  plt.show()

  if __name__=="__main__":

  data,target=getdata()

  model=get_model()

  '''

  设置epoch和baitch_size参数

  y:存储每一次的结果

  '''

  epoch=[1,3,5,7]

  size=[50,100,150,200,250]

  y=np.zeros([4,5])

  for i in range(len(epoch)):

  for j in range(len(size)):

  print("now:",i,j)

  y[i,j]=kcross(data,target,size[j],epoch[i],3)

  draw(size,y,epoch)

  最后得出运行结果

感谢各位的阅读,以上就是“CNN怎么实现数字识别并改变参数”的内容了,经过本文的学习后,相信大家对CNN怎么实现数字识别并改变参数这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是编程网,小编将为大家推送更多相关知识点的文章,欢迎关注!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

CNN怎么实现数字识别并改变参数

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

CNN怎么实现数字识别并改变参数

这篇文章主要讲解了“CNN怎么实现数字识别并改变参数”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“CNN怎么实现数字识别并改变参数”吧!  1.网络层级结构概述  Input layer:
2023-06-02

python机器学习sklearn怎么实现识别数字

这篇文章主要介绍了python机器学习sklearn怎么实现识别数字的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇python机器学习sklearn怎么实现识别数字文章都会有所收获,下面我们一起来看看吧。数据处
2023-06-29

golang可变参数是怎么实现的?

go 语言中没有传统意义上的可变参数,但可通过内置 ... 语法糖实现:函数可变参数:使用 ...,参数被收集到一个 slice 中。方法可变参数:与函数类似,但可变参数列表必须作为最后一个参数传递。可变参数通过 ... 语法糖实现,可用于
golang可变参数是怎么实现的?
2024-04-29

Python怎么实现识别文字中的省市区并绘图

这篇文章主要介绍“Python怎么实现识别文字中的省市区并绘图”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python怎么实现识别文字中的省市区并绘图”文章能帮助大家解决问题。1.准备开始之前,你
2023-07-02

vue怎么实现数字变换动画

今天小编给大家分享一下vue怎么实现数字变换动画的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。UI图数字部分如下:emmm。
2023-06-30

怎么用Shell实现识别物理cpu个数、核心数

本篇内容主要讲解“怎么用Shell实现识别物理cpu个数、核心数”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“怎么用Shell实现识别物理cpu个数、核心数”吧!如何识别物理cpu个数,几个核,
2023-06-09

java中怎么用注解实现变量参数传递

在Java中,可以使用注解来实现变量参数传递的方式是通过自定义注解和反射机制来实现。下面是一个示例代码:首先定义一个自定义注解,用于标记需要传递的参数:import java.lang.annotation.ElementType;imp
java中怎么用注解实现变量参数传递
2024-03-12

Redis冷热数据识别与交换怎么实现

本文小编为大家详细介绍“Redis冷热数据识别与交换怎么实现”,内容详细,步骤清晰,细节处理妥当,希望这篇“Redis冷热数据识别与交换怎么实现”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。背景Redis混合存储
2023-06-19

Android下拉框动态改变数据怎么实现

要实现Android下拉框动态改变数据,可以通过以下步骤来实现:在Activity或Fragment中找到下拉框控件,如Spinner或SpinnerAdapter。创建一个新的数据集合,用于存储要动态改变的数据。创建一个适配器(Ada
Android下拉框动态改变数据怎么实现
2024-03-04

PyTorch简单手写数字识别的实现过程是怎样的

本篇文章给大家分享的是有关PyTorch简单手写数字识别的实现过程是怎样的,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。一、包导入及所需数据的下载torchvision包的主要
2023-06-25

Qt怎么连接数据库并实现数据库增删改查

这篇文章主要讲解了“Qt怎么连接数据库并实现数据库增删改查”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Qt怎么连接数据库并实现数据库增删改查”吧!1.连接数据库先来看下连接数据库的效果图。
2023-07-06

怎么用vue实现可改变购物数量的购物车

这篇文章主要讲解了“怎么用vue实现可改变购物数量的购物车”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么用vue实现可改变购物数量的购物车”吧!本文实例为大家分享了vue实现改变购物数量
2023-06-20

AngularJS怎么实现只能输入规定数量的字符并显示

本文小编为大家详细介绍“AngularJS怎么实现只能输入规定数量的字符并显示”,内容详细,步骤清晰,细节处理妥当,希望这篇“AngularJS怎么实现只能输入规定数量的字符并显示”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来
2023-07-04

HTML5 Canvas怎么实现圆形进度条并显示数字百分比效果

这篇文章主要介绍HTML5 Canvas怎么实现圆形进度条并显示数字百分比效果,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!实现效果1.首先创建html代码2023-06-09

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录