我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python基于HOG+SVM/RF/DT等模型实现目标人行检测功能

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python基于HOG+SVM/RF/DT等模型实现目标人行检测功能

当下基本所有的目标检测类的任务都会选择基于深度学习的方式,诸如:YOLO、SSD、RCNN等等,这一领域不乏有很多出色的模型,而且还在持续地推陈出新,模型的迭代速度很快,其实最早实现检测的时候还是基于机器学习去做的,HOG+SVM就是非常经典有效的一套框架,今天这里并不是说要做出怎样的效果,而是基于HOG+SVM来实践机器学习检测的流程。

这里为了方便处理,我是从网上找的一个数据集,主要是行人检测方向的,当然了这个用车辆检测、火焰检测等等的数据集都是可以的,本质都是一样的。

首先看下数据集,数据集主要分为两个类别,一个类别是包含行人的,另一个类别是不包含行人的,首先看下不包含行人的:

接下来看下包含行人的:

看到这里,其实就不难理解,这里的SVM扮演的主要作用就是二分类模型了。

接下来我们需要对原始图像的数据集进行特征提取计算,这里是基于HOG的方式实现的,可以自行实现HOG特征向量提取方法,也可以直接使用skimage提供的HOG提取器来一步实现,这里为了方便,我是直接使用的skimage提供的HOG方法,核心实现如下:

def img2Feature(dataDir="data/",save_path="feature.json"):
    """
    特征提取计算
    """
    feature=[]
    for one_label in os.listdir(dataDir):
        print("one_label: ", one_label)
        oneDir=dataDir+one_label+'/'
        for one_pic in os.listdir(oneDir):
            one_path=oneDir+one_pic
            print("one_path: ", one_path)
            #加载图像
            one_img = imread(one_path, as_gray=True)
            one_vec = hog(one_img, orientations=orientations, pixels_per_cell=pixels_per_cell, cells_per_block=cells_per_block, 
                        visualize=visualize, block_norm=normalize)
            one_vec=one_vec.tolist()
            one_vec.append(one_label)
            feature.append(one_vec)
    print("feature_length: ", len(feature))
    with open(save_path,"w") as f:
        f.write(json.dumps(feature))

HOG提取得到的向量维度很大,这里就不进行展示了。

之后就可以训练模型了,核心实现如下:

resDir = "results/"
if not os.path.exists(resDir):
    os.makedirs(resDir)
data = "feature.json"
dict1 = DTModel(data=data, rationum=0.25, model_path=resDir + "DT.model")
dict2 = RFModel(data=data, rationum=0.25, model_path=resDir + "RF.model")
dict3 = SVMModel(data=data, rationum=0.25, model_path=resDir + "SVM.model")
res_dict = {}
res_dict["DT"], res_dict["RF"], res_dict["SVM"] = dict1, dict2, dict3
with open(resDir + "res_dict.json", "w") as f:
    f.write(json.dumps(res_dict))
comparePloter(dict1, dict2, dict3, save_path=resDir + "comparePloter.jpg")

这里,我是同时使用了决策树DT、随机森林RF、支持向量机SVM三种模型来进行分类和对比可视化,对比结果如下:

{
	"DT": {
		"precision": 0.7573482282561567,
		"recall": 0.7597846737437716,
		"F1": 0.7584933696379963,
		"accuracy": 0.7584933696379963
	},
	"RF": {
		"precision": 0.9156160607479066,
		"recall": 0.8801773928046967,
		"F1": 0.893107332148193,
		"accuracy": 0.893107332148193
	},
	"SVM": {
		"precision": 0.9281402443868877,
		"recall": 0.9272928963585789,
		"F1": 0.9277128372009962,
		"accuracy": 0.9277128372009962
	}
}

为了直观展示,这里对三种模型的性能进行可视化展示,如下所示:

        接下来我们对训练好的模型调用进行测试,查看具体的效果,随机选取了几张网上的图像,测试结果如下:

整体看下来,效果表现一般,不过这个也只是主要以实践流程为目的,并不是实际做项目的,而且各个环节都有优化提升的空间,模型的参数也都没有调过。

到此这篇关于Python基于HOG+SVM/RF/DT等模型实现目标检测[行人检测]的文章就介绍到这了,更多相关Python目标检测内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python基于HOG+SVM/RF/DT等模型实现目标人行检测功能

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python基于HOG+SVM/RF/DT等模型怎么实现目标人行检测功能

本篇内容主要讲解“Python基于HOG+SVM/RF/DT等模型怎么实现目标人行检测功能”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python基于HOG+SVM/RF/DT等模型怎么实现目
2023-06-30

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录