我的编程空间,编程开发者的网络收藏夹
学习永远不晚

TransUnet官方代码测试自己的数据集(已训练完毕)

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

TransUnet官方代码测试自己的数据集(已训练完毕)

***************************************************

码字不易,收藏之余,别忘了给我点个赞吧!

***************************************************

---------Start

首先参考上一篇的训练过程,这是测试过程,需要用到训练过程的权重。

1. TransUnet训练完毕之后,会生成权重文件(默认保存位置如下),snapshot_path为保存权重的路径。

在这里插入图片描述
权重文件
在这里插入图片描述

2. 修改test.py文件

调整数据集路径。
在这里插入图片描述
训练和测试时的图像设置相同大小,并设置主干模型的名称同训练时一致。
在这里插入图片描述

配置数据集相关信息。
在这里插入图片描述
手动添加权重。
在这里插入图片描述

3. 设置DataLoader

设置DataLoader中参数num_workers=0。
在这里插入图片描述

4. 修改utils.py文件

替换utils.py中的test_single_volume函数,原网络输出的是0,1,2,3,4像素的图片,分别代表5个类别,直接显示均呈黑色。对此,我们通过像素调整,使每个类别呈现不同的颜色。

def test_single_volume(image, label, net, classes, patch_size=[256, 256], test_save_path=None, case=None, z_spacing=1):    image, label = image.squeeze(0).cpu().detach().numpy(), label.squeeze(0).cpu().detach().numpy()    _,x, y = image.shape    if x != patch_size[0] or y != patch_size[1]:        #缩放图像符合网络输入        image = zoom(image, (1,patch_size[0] / x, patch_size[1] / y), order=3)    input = torch.from_numpy(image).unsqueeze(0).float().cuda()    net.eval()    with torch.no_grad():        out = torch.argmax(torch.softmax(net(input), dim=1), dim=1).squeeze(0)        out = out.cpu().detach().numpy()        if x != patch_size[0] or y != patch_size[1]:            #缩放图像至原始大小            prediction = zoom(out, (x / patch_size[0], y / patch_size[1]), order=0)        else:            prediction = out    metric_list = []    for i in range(1, classes):        metric_list.append(calculate_metric_percase(prediction == i, label == i))    if test_save_path is not None:        a1 = copy.deepcopy(prediction)        a2 = copy.deepcopy(prediction)        a3 = copy.deepcopy(prediction)        a1[a1 == 1] = 255        a1[a1 == 2] = 0        a1[a1 == 3] = 255        a1[a1 == 4] = 20        a2[a2 == 1] = 255        a2[a2 == 2] = 255        a2[a2 == 3] = 0        a2[a2 == 4] = 10        a3[a3 == 1] = 255        a3[a3 == 2] = 77        a3[a3 == 3] = 0        a3[a3 == 4] = 120        a1 = Image.fromarray(np.uint8(a1)).convert('L')        a2 = Image.fromarray(np.uint8(a2)).convert('L')        a3 = Image.fromarray(np.uint8(a3)).convert('L')        prediction = Image.merge('RGB', [a1, a2, a3])        prediction.save(test_save_path+'/'+case+'.png')    return metric_list

**方便小伙伴理解这部分代码,特意做了个图,a1,a2,a3分别代表RGB三个通道,开始它们的值通过deepcopy函数直接赋值,故三者的值都是一样的。
这里拿类别1举例:a1[a12]=0代表R通道中输出结果为2的赋值0,
a2[a2
2]=255代表G通道中输出结果为2的赋值255,
a3[a3==2]=77代表B通道中输出结果为2的赋值77,(0,255,77)对应就是绿色,类别2就是绿色(轮子)。
然后通过Image.merge(‘RGB’, [a1, a2, a3])函数合并三个通道,此时prediction就成了三通道彩色图。

在这里插入图片描述
在这里插入图片描述

至此,设置完毕,右键run运行。

5. 测试结束

测试结束后,会在根目录下生成predictions文件夹,文件夹的内容如下。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

来源地址:https://blog.csdn.net/qq_37652891/article/details/123470578

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

TransUnet官方代码测试自己的数据集(已训练完毕)

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录