我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python使用箱型图剔除异常值的实现方法

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python使用箱型图剔除异常值的实现方法

箱型图

将一组数据从大到小排列,分别计算出,

  • 上四分位数?3: 75%分位点所对应的值
  • 中位数?2:         50%分位点对应的值
  • 下四分位数?1: 25%分位点所对应的值
  • 上边缘(须):            Q3+1.5(Q3-Q1)
  • 下边缘(须):            Q1-1.5(Q3-Q1)

数据?的合理范围为:

?1 − 1.5(?3 − ?1)  ≤  ?  ≤  ?3 + 1.5(?3 − ?1)

        和使用3σ准则剔除异常值相比,箱线图不需要数据服从正态分布,能真实直观的表现数据形状;箱线图以四分位数和四分位距作为判断异常值的标准,四分位数具有一定的耐抗性,多达 25%的数据可以变得任意远而不会很大地扰动四分位数,使得异常值无法对数据形状造成巨大影响,因此箱形图识别异常值的结果比较客观。

pandas.DataFrame.quantile

对于dataframe形式的数据,可以直接调用DataFrame.quantile(),以快速计算箱型图的分位点。

DataFrame.quantile(q=0.5, axis=0, numeric_only=True, interpolation='linear')

参数:

  • q:float or array-like, default 0.5 (50% quantile),0 ≤ q ≤ 1之间的值,即要计算的分位数;
  • axis:{0, 1, ‘index’, ‘columns’}, default 0,对于行,等于0或“索引”,对于列,等于1或“列”;
  • numeric_only:bool, default True,如果为False,则还将计算日期时间和时间增量数据的分位数;
  • interpolation:{‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’},当所需分位数位于两个数据点i和j之间时,此可选参数指定要使用的插值方法。

返回:(Series or DataFrame)

  • 如果q是数组,则将返回DataFrame,其中index为q,列为self的列,值为分位数。
  • 如果q为float,则index是self的列,值为分位数

示例:

import pandas as pd
import numpy as np
 
# 生成数据
d = pd.DataFrame({"SO2":[-1000, 5, 5, 10, 9, 12, 11, 100],
                     "NO2":[12, 52, 14, 10, 10, 23, 15, 9],
                     "CO2":[15, 23, 0, 24, 25, 7, 4, 715],
                     "O3":[17, 23, 33, 10000, 11, 47, 5, 22] })

q 为 float:

q 为 数组: 

代码实现 

# 箱型图判断异常点
def box_outlier(data):
    df = data.copy(deep=True)
    out_index = []
    for col in df.columns:             # 对每一列分别用箱型图进行判断
        Q1 = df[col].quantile(q=0.25)       # 下四分位
        Q3 = df[col].quantile(q=0.75)       # 上四分位
        low_whisker = Q1 - 1.5 * (Q3 - Q1)  # 下边缘
        up_whisker = Q3 + 1.5 * (Q3 - Q1)   # 上边缘
        # 寻找异常点,获得异常点索引值,删除索引值所在行数据
        rule = (df[col] > up_whisker) | (df[col] < low_whisker)  
        out = df[col].index[rule]
        out_index += out.tolist()  
    df.drop(out_index, inplace=True)
    return df

使用前文创建的数据

box_outlier(d)

参考

pandas.DataFrame.quantile

【PYTHON 机器学习】正态分布检验以及异常值处理3Σ原则

总结

到此这篇关于python使用箱型图剔除异常值的文章就介绍到这了,更多相关python箱型图剔除异常值内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python使用箱型图剔除异常值的实现方法

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python使用箱型图剔除异常值的实现方法

python中的箱线图可用于分析数据中的异常值,下面这篇文章主要给大家介绍了关于python使用箱型图剔除异常值的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
2023-05-19

使用Spring MVC实现统一异常处理的方法

这篇文章将为大家详细讲解有关使用Spring MVC实现统一异常处理的方法,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。1 描述 在J2EE项目的开发中,不管是对底层的数据库操作过程,还是业
2023-05-31

Python循环语句使用中异常现象的处理方法

本篇内容介绍了“Python循环语句使用中异常现象的处理方法”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!break语句用于立刻中止循环,c
2023-06-17

Python使用PIL库实现验证码图片的方法

本文实例讲述了Python使用PIL库实现验证码图片的方法。分享给大家供大家参考,具体如下: 现在的网页中,为了防止机器人提交表单,图片验证码是很常见的应对手段之一。这里就不详细介绍了,相信大家都遇到过。 现在就给出用Python的PIL库
2022-06-04

python使用threading获取线程函数返回值的实现方法

threading用于提供线程相关的操作,线程是应用程序中工作的最小单元。python当前版本的多线程库没有实现优先级、线程组,线程也不能被停止、暂停、恢复、中断。 threading模块提供的类: Thread, Lock, Rlock
2022-06-04

Python实现列表删除重复元素的三种常用方法分析

本文实例讲述了Python实现列表删除重复元素的三种常用方法。分享给大家供大家参考,具体如下: 给定一个列表,要求删除列表中重复元素。listA = ['python','语','言','是','一','门','动','态','语','言'
2022-06-04

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录