我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python中Numpy库datetime类型的处理是怎样的

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python中Numpy库datetime类型的处理是怎样的

本篇文章给大家分享的是有关Python中Numpy库datetime类型的处理是怎样的,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。

关于时间的处理,Python中自带的处理时间的模块就有time 、datetime、calendar,另外还有扩展的第三方库,如dateutil等等。通过这些途径可以随心所欲地用Python去处理时间。当我们用NumPy库做数据分析时,如何转换时间呢?

在NumPy 1.7版本开始,它的核心数组(ndarray)对象支持datetime相关功能,由于’datetime’这个数据类型名称已经在Python自带的datetime模块中使用了, NumPy中时间数据的类型称为’datetime64’。

单个时间格式字符串转换为numpy的datetime对象,可使用datetime64实例化一个对象,如下所示:

#时间字符串转numpy.datetime64datetime_nd=np.datetime64('2019-01-01')print(type(datetime_nd))#<class 'numpy.datetime64'>

反过来numpy的datetime对象转换为时间格式字符串,可使用datetime_as_string()函数,如下所示:

#numpy.datetime64转时间字符串datetime_str=np.datetime_as_string(datetime_nd)print(type(datetime_str))#<class 'numpy.str_'>

从时间格式字符串数组去创建numpy的datetime对象数组(array)时,可以直接使用numpy.array()函数,指定dtype为’datetime64’,这样的话数组中的元素为’datetime64’类型,如下所示:

datetime_array = np.array(['2019-01-05','2019-01-02','2019-01-03'], dtype='datetime64')print(datetime_array)#['2019-01-05' '2019-01-02' '2019-01-03']print(type(datetime_array))#<class 'numpy.ndarray'>print(type(datetime_array[0]))#<class 'numpy.datetime64'>

也可以通过numpy.arange()函数,给定时间起始范围去创建numpy的datetime对象数组(array),指定dtype为’datetime64’时默认以日为时间间隔,如下所示:

datetime_array = np.arange('2019-01-05','2019-01-10', dtype='datetime64')print(datetime_array)#['2019-01-05' '2019-01-06' '2019-01-07' '2019-01-08' '2019-01-09']

设定numpy.arange()函数中的dtype参数,可以调整时间的间隔,比如以年、月、周,甚至小时、分钟、毫秒程度的间隔生成时间数组,这点和Python的datetime模块是一样的,分为了date单位和time单位。如下所示:

Python中Numpy库datetime类型的处理是怎样的

# generate year datetime arraydatetime_array = np.arange('2018-01-01','2020-01-01', dtype='datetime64[Y]')print(datetime_array)#['2018' '2019']# generate month datetime arraydatetime_array = np.arange('2019-01-01','2019-10-01', dtype='datetime64[M]')print(datetime_array)#['2019-01' '2019-02' '2019-03' '2019-04' '2019-05' '2019-06' '2019-07' '2019-08' '2019-09']# generate week datetime arraydatetime_array = np.arange('2019-01-05','2019-02-10', dtype='datetime64[W]')print(datetime_array)#['2019-01-03' '2019-01-10' '2019-01-17' '2019-01-24' '2019-01-31']# generate ms datetime arraydatetime_array = np.arange('2019-01-05','2019-01-10', dtype='datetime64[ms]')print(datetime_array)#['2019-01-05T00:00:00.000' '2019-01-05T00:00:00.001'# '2019-01-05T00:00:00.002' ... '2019-01-09T23:59:59.997'# '2019-01-09T23:59:59.998' '2019-01-09T23:59:59.999']

将numpy.datetime64转化为datetime格式转换为datetime格式,可使用astype()方法转换数据类型,如下所示:

#numpy.datetime64转化为datetime格式datetime_df=datetime_nd.astype(datetime.datetime)print(type(datetime_df))#<class 'datetime.date'>

另外,numpy也提供了datetime.timedelta类的功能,支持两个时间对象的运算,得到一个时间单位形式的数值。因为numpy的核心数组(ndarray)对象没有物理量系统(physical quantities system),所以创建了timedelta64数据类型来补充datetime64。datetime和timedelta结合提供了更简单的datetime计算方法。如下所示:

# numpy.datetime64 calculationsdatetime_delta = np.datetime64('2009-01-01') - np.datetime64('2008-01-01')print(datetime_delta)#366 daysprint(type(datetime_delta))#<class 'numpy.timedelta64'>datetime_delta = np.datetime64('2009') + np.timedelta64(20, 'D')print(datetime_delta)#2009-01-21datetime_delta = np.datetime64('2011-06-15T00:00') + np.timedelta64(12, 'h')print(datetime_delta)#2011-06-15T12:00datetime_delta = np.timedelta64(1,'W') / np.timedelta64(1,'D')print(datetime_delta)#7.0

以上就是Python中Numpy库datetime类型的处理是怎样的,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注编程网行业资讯频道。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python中Numpy库datetime类型的处理是怎样的

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python中Numpy库datetime类型的处理是怎样的

本篇文章给大家分享的是有关Python中Numpy库datetime类型的处理是怎样的,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。关于时间的处理,Python中自带的处理时间
2023-06-02

怎样处理Golang常见的错误类型

Golang作为一门高效、简洁的编程语言,其错误处理机制也是非常强大的。在实际编码过程中,我们经常会遇到各种各样的错误类型,如文件读写错误、网络连接错误、数据格式错误等。本文将介绍Golang中常见的错误类型以及如何处理这些错误,通过具体的
怎样处理Golang常见的错误类型
2024-02-28

怎么创建一个创建MySQL数据库中的datetime类型

今天小编给大家分享一下怎么创建一个创建MySQL数据库中的datetime类型的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。
2023-06-29

python day3特殊数据类型是怎样的

这期内容当中小编将会给大家带来有关python day3特殊数据类型是怎样的,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。集合:list声明方式:a=[1,2,3,4](里面也可以是字符串,浮点等等)按照
2023-06-02

Redis中的List类型是怎样实现的

Redis中的List类型是通过双向链表实现的。在Redis中,每个list对象都包含一个指向头节点和尾节点的指针,以及存储实际数据的节点。双向链表的结构使得在列表的两端进行插入和删除操作都可以在常数时间内完成,因此List类型在Redis
Redis中的List类型是怎样实现的
2024-04-09

自动类型安全的REST .NET标准库refit是怎样的

本篇文章为大家展示了自动类型安全的REST .NET标准库refit是怎样的,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。在SCOTT HANSELMAN 博客上看到一个好东西《Exploring
2023-06-19

从Python到NumPy最接近人类思维的in操作是怎样的

这篇文章将为大家详细讲解有关从Python到NumPy最接近人类思维的in操作是怎样的,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。在Python语言中,in是一个使用频率非常高的操作符,用
2023-06-15

python数据分析中的异常值处理是怎样的

本篇文章为大家展示了python数据分析中的异常值处理是怎样的,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。异常值异常值是指样本中的个别值,其数值明显偏离其余的观测值。异常值也称离群点,异常值的分析
2023-06-29

python中文件操作与异常的处理是怎样的

本篇文章为大家展示了python中文件操作与异常的处理是怎样的,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。一、 文件的操作1.1创建文件格式:f = open(‘文件, ‘w)或者f = open
2023-06-22

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录